@article{ZNSL_2018_468_a8,
author = {P. E. Naryshkin},
title = {A remark on the isomorphism between the {Bernoulli} scheme and the {Plancherel} measure},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {98--104},
year = {2018},
volume = {468},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a8/}
}
P. E. Naryshkin. A remark on the isomorphism between the Bernoulli scheme and the Plancherel measure. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 98-104. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a8/
[1] S. V. Kerov, A. M. Vershik, “The characters of the infinite symmetric group and probability properties of the Robinson–Schensted–Knuth algorithm.”, SIAM J. Algebr. Discrete Methods, 7:1 (1986), 116–124 | DOI | MR | Zbl
[2] D. Romik, P. Śniady, “Jeu de taquin dynamics on infinite Young tableaux and second class particles”, Ann. Probab., 43:2 (2015), 682–737 | DOI | MR | Zbl
[3] P. Śniady, “Robinson–Schensted–Knuth algorithm, jeu de taquin and Kerov–Vershik measures on infinite tableaux”, SIAM J. Discrete Math., 28:2 (2014), 598–630 | DOI | MR | Zbl
[4] S. V. Fomin, “Prilozhenie 1”: R. Stenli, Perechislitelnaya kombinatorika, v. 2, Mir, Moskva, 2009
[5] P. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, Cambridge, 2009 | MR | Zbl
[6] A. Vershik, “Teoriya filtratsii podalgebr, standartnost i nezavisimost”, Uspekhi mat. nauk, 72:2(434) (2017), 67–146 | DOI | MR | Zbl
[7] A. Vershik, “Ubyvayuschie posledovatelnosti izmerimykh razbienii i ikh prilozheniya”, DAN SSSR, 193:4 (1970), 748–751 | MR | Zbl