The limit shape of a~probability measure on a~tensor product of modules of the $B_n$ algebra
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 82-97

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a probability measure on the integral dominant weights in the decomposition of the $N$th tensor power of the spinor representation of the Lie algebra $\mathrm{so}(2n+1)$. The probability of a dominant weight $\lambda$ is defined as the dimension of the irreducible component of $\lambda$ divided by the total dimension $2^{nN}$ of the tensor power. We prove that as $N\to\infty$, the measure weakly converges to the radial part of the $\mathrm{SO}(2n+1)$-invariant measure on $\mathrm{so}(2n+1)$ induced by the Killing form. Thus, we generalize Kerov's theorem for $\mathrm{su}(n)$ to $\mathrm{so}(2n+1)$.
@article{ZNSL_2018_468_a7,
     author = {A. A. Nazarov and O. V. Postnova},
     title = {The limit shape of a~probability measure on a~tensor product of modules of the $B_n$ algebra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--97},
     publisher = {mathdoc},
     volume = {468},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a7/}
}
TY  - JOUR
AU  - A. A. Nazarov
AU  - O. V. Postnova
TI  - The limit shape of a~probability measure on a~tensor product of modules of the $B_n$ algebra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 82
EP  - 97
VL  - 468
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a7/
LA  - en
ID  - ZNSL_2018_468_a7
ER  - 
%0 Journal Article
%A A. A. Nazarov
%A O. V. Postnova
%T The limit shape of a~probability measure on a~tensor product of modules of the $B_n$ algebra
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 82-97
%V 468
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a7/
%G en
%F ZNSL_2018_468_a7
A. A. Nazarov; O. V. Postnova. The limit shape of a~probability measure on a~tensor product of modules of the $B_n$ algebra. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 82-97. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a7/