The limit shape of a~probability measure on a~tensor product of modules of the $B_n$ algebra
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 82-97
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a probability measure on the integral dominant weights in the decomposition of the $N$th tensor power of the spinor representation of the Lie algebra $\mathrm{so}(2n+1)$. The probability of a dominant weight $\lambda$ is defined as the dimension of the irreducible component of $\lambda$ divided by the total dimension $2^{nN}$ of the tensor power. We prove that as $N\to\infty$, the measure weakly converges to the radial part of the $\mathrm{SO}(2n+1)$-invariant measure on $\mathrm{so}(2n+1)$ induced by the Killing form. Thus, we generalize Kerov's theorem for $\mathrm{su}(n)$ to $\mathrm{so}(2n+1)$.
@article{ZNSL_2018_468_a7,
author = {A. A. Nazarov and O. V. Postnova},
title = {The limit shape of a~probability measure on a~tensor product of modules of the $B_n$ algebra},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {82--97},
publisher = {mathdoc},
volume = {468},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a7/}
}
TY - JOUR AU - A. A. Nazarov AU - O. V. Postnova TI - The limit shape of a~probability measure on a~tensor product of modules of the $B_n$ algebra JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 82 EP - 97 VL - 468 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a7/ LA - en ID - ZNSL_2018_468_a7 ER -
A. A. Nazarov; O. V. Postnova. The limit shape of a~probability measure on a~tensor product of modules of the $B_n$ algebra. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 82-97. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a7/