The boundary of the refined Kingman graph
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 58-74
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce the refined Kingman graph $\mathbb D$ whose vertices are indexed by the set of compositions of positive integers and multiplicity function reflects the Pieri rule for quasisymmetric monomial functions. We show that the Martin boundary of $\mathbb D$ can be identified with the space $\Omega$ of all sets of disjoint open subintervals of $[0,1]$ and coincides with the minimal boundary of $\mathbb D$.
@article{ZNSL_2018_468_a5,
author = {M. V. Karev and P. P. Nikitin},
title = {The boundary of the refined {Kingman} graph},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {58--74},
publisher = {mathdoc},
volume = {468},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a5/}
}
M. V. Karev; P. P. Nikitin. The boundary of the refined Kingman graph. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 58-74. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a5/