The boundary of the refined Kingman graph
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 58-74

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the refined Kingman graph $\mathbb D$ whose vertices are indexed by the set of compositions of positive integers and multiplicity function reflects the Pieri rule for quasisymmetric monomial functions. We show that the Martin boundary of $\mathbb D$ can be identified with the space $\Omega$ of all sets of disjoint open subintervals of $[0,1]$ and coincides with the minimal boundary of $\mathbb D$.
@article{ZNSL_2018_468_a5,
     author = {M. V. Karev and P. P. Nikitin},
     title = {The boundary of the refined {Kingman} graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {58--74},
     publisher = {mathdoc},
     volume = {468},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a5/}
}
TY  - JOUR
AU  - M. V. Karev
AU  - P. P. Nikitin
TI  - The boundary of the refined Kingman graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 58
EP  - 74
VL  - 468
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a5/
LA  - en
ID  - ZNSL_2018_468_a5
ER  - 
%0 Journal Article
%A M. V. Karev
%A P. P. Nikitin
%T The boundary of the refined Kingman graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 58-74
%V 468
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a5/
%G en
%F ZNSL_2018_468_a5
M. V. Karev; P. P. Nikitin. The boundary of the refined Kingman graph. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 58-74. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a5/