An explicit formula for Witten's $2$-correlators
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 53-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An explicit closed-form expression for the $2$-correlators of Witten's two-dimensional topological gravity is derived in arbitrary genus.
@article{ZNSL_2018_468_a4,
     author = {P. G. Zograf},
     title = {An explicit formula for {Witten's} $2$-correlators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {53--57},
     year = {2018},
     volume = {468},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a4/}
}
TY  - JOUR
AU  - P. G. Zograf
TI  - An explicit formula for Witten's $2$-correlators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 53
EP  - 57
VL  - 468
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a4/
LA  - en
ID  - ZNSL_2018_468_a4
ER  - 
%0 Journal Article
%A P. G. Zograf
%T An explicit formula for Witten's $2$-correlators
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 53-57
%V 468
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a4/
%G en
%F ZNSL_2018_468_a4
P. G. Zograf. An explicit formula for Witten's $2$-correlators. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 53-57. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a4/

[1] A. Kabanov, T. Kimura, “Intersection numbers and rank one cohomological field theories in genus one”, Comm. Math. Phys., 194 (1998), 651–674 | DOI | MR | Zbl

[2] M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147 (1992), 1–23 | DOI | MR | Zbl

[3] K. Liu, H. Xu, An effective recursion formula for computing intersection numbers, 2007, arXiv: 0710.5322

[4] E. Witten, “Two-dimensional gravity and intersection theory on moduli space”, Surveys Diff. Geom., 1 (1991), 243–310 | DOI | MR | Zbl

[5] V. Delecroix, E. Goujard, P. Zograf, A. Zorich, in preparation