On a~universal Borel adic space
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 24-38

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the so-called uniadic graph and its adic automorphism are Borel universal, i.e., every aperiodic Borel automorphism is isomorphic to the restriction of this automorphism to a subset invariant under the adic transformation, the isomorphism being defined on a universal (with respect to the measure) set. We develop the concept of basic filtrations and combinatorial definiteness of automorphisms suggested in our previous paper.
@article{ZNSL_2018_468_a2,
     author = {A. M. Vershik and P. B. Zatitskii},
     title = {On a~universal {Borel} adic space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {24--38},
     publisher = {mathdoc},
     volume = {468},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a2/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - P. B. Zatitskii
TI  - On a~universal Borel adic space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 24
EP  - 38
VL  - 468
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a2/
LA  - ru
ID  - ZNSL_2018_468_a2
ER  - 
%0 Journal Article
%A A. M. Vershik
%A P. B. Zatitskii
%T On a~universal Borel adic space
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 24-38
%V 468
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a2/
%G ru
%F ZNSL_2018_468_a2
A. M. Vershik; P. B. Zatitskii. On a~universal Borel adic space. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 24-38. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a2/