On a universal Borel adic space
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 24-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove that the so-called uniadic graph and its adic automorphism are Borel universal, i.e., every aperiodic Borel automorphism is isomorphic to the restriction of this automorphism to a subset invariant under the adic transformation, the isomorphism being defined on a universal (with respect to the measure) set. We develop the concept of basic filtrations and combinatorial definiteness of automorphisms suggested in our previous paper.
@article{ZNSL_2018_468_a2,
     author = {A. M. Vershik and P. B. Zatitskii},
     title = {On a~universal {Borel} adic space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {24--38},
     year = {2018},
     volume = {468},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a2/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - P. B. Zatitskii
TI  - On a universal Borel adic space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 24
EP  - 38
VL  - 468
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a2/
LA  - ru
ID  - ZNSL_2018_468_a2
ER  - 
%0 Journal Article
%A A. M. Vershik
%A P. B. Zatitskii
%T On a universal Borel adic space
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 24-38
%V 468
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a2/
%G ru
%F ZNSL_2018_468_a2
A. M. Vershik; P. B. Zatitskii. On a universal Borel adic space. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 24-38. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a2/

[1] A. M. Vershik, “Ravnomernaya algebraicheskaya approksimatsiya operatorov sdviga i umnozheniya”, DAN SSSR, 259:3 (1981), 526–529 | MR | Zbl

[2] A. M. Vershik, “Teorema o markovskoi periodicheskoi approksimatsii v ergodicheskoi teorii”, Zap. nauchn. sem. LOMI, 115, 1982, 72–82 | MR | Zbl

[3] A. M. Vershik, P. B. Zatitskii, “Universalnaya adicheskaya approksimatsiya, invariantnye mery i masshtabirovannaya entropiya”, Izv. RAN. Ser. matem., 81:4 (2017), 68–107 | DOI | MR | Zbl

[4] E. Glasner, B. Weiss, “On the interplay between measurable and topological dynamics”, Handbook of Dynamical Systems, v. 1B, eds. B. Hasselblatt, A. Katok, Elsevier, Amsterdam, 2006, 597–648 | MR | Zbl

[5] A. M. Vershik, “Teoriya filtratsii podalgebr, standartnost i nezavisimost”, Uspekhi mat. nauk, 72:2(434) (2017), 67–146 | DOI | MR | Zbl

[6] A. M. Vershik, P. B. Zatitskii, “Kombinatornye invarianty metricheskikh filtratsii i avtomorfizmov; universalnyi adicheskii graf”, Funkts. anal. i pril., 52:4 (2018), 23–37 | DOI

[7] A. Kechris, A. Louveau, “The classification of hypersmooth Borel equivalence relations”, J. Amer. Math. Soc., 10:1 (1997), 215–242 | DOI | MR | Zbl

[8] V. Kanovei, Borel Equivalence Relations. Structure and Classification, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl

[9] S. Thomas, “A descriptive view of unitary group representations”, J. European Math. Soc., 17 (2015), 1761–1787 | DOI | MR | Zbl

[10] K. Schmidt, “Unique ergodicity for quasi-invariant measures”, Math. Z., 167 (1979), 169–172 | DOI | MR | Zbl