@article{ZNSL_2018_468_a19,
author = {S. Soloviev and J. Malakhovski},
title = {Automorphisms of types and their applications},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {287--308},
year = {2018},
volume = {468},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a19/}
}
S. Soloviev; J. Malakhovski. Automorphisms of types and their applications. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 287-308. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a19/
[1] L. Babai, “Automorphism Groups, Isomorphism, Reconstruction”, Handbook of Combinatorics, v. 2, Elsevier, 1995, 1447–1541 | MR
[2] H. Barendregt, The Lambda Calculus, Its Syntax and Semantics, revised edition, North-Holland Plc., 1984 | MR | Zbl
[3] D. A. Basin, “Equality of Terms Containing Associative-Commutative Functions and Commutative Binding Operators is Isomorphism Complete”, 10th Int. Conf. on Automated, Lecture Notes in Artificial Intelligence, 449, ed. M. E. Stickel, Springer-Verlag, Kaiserslautern, Germany, 1990, 251–260 | MR
[4] R. Brown, Ph. G. Higgins, R. Sivera, Nonabelian Algebraic Topology, European Math. Soc., 2011 | MR | Zbl
[5] K. Bruce, G. Longo, “Provable isomorphisms and domain equations in models of typed languages”, ACM symposium on theory of computing, STOC 85, 1985, 263–272
[6] M. Dezani-Ciancaglini, “Characterization of normal forms possessing inverse in the $\lambda-\beta-\eta$-calculus”, Theor. Comp. Sci., 2 (1976), 323–337 | DOI | MR | Zbl
[7] R. Di Cosmo, Isomorphisms of types: from lambda-calculus to information retrieval and language design, Birkhauser, 1995 | MR | Zbl
[8] D. Gilles, “A complete proof synthesis method for the cube of type systems”, J. Logic Comp., 3:3 (1993), 287–315 | DOI | MR | Zbl
[9] D. Gilles, “Higher-order unification and matching”, Handbook of automated reasoning, Elsevier Science, 2, no. 16, eds. Alan Robinson, Andrei Voronkov, 2001, 1009–1062 | Zbl
[10] J. (Yossi) Gil, Y. Zibin, “Efficient Algorithms for Isomorphisms of Simple Types”, Math. Struct. Comp. Science, 15:5 (2005), 917–957 | DOI | MR | Zbl
[11] H. Goguen, A Typed Operational Semantics for Type Theory, PhD thesis, University of Edinburgh, 1994 | MR
[12] M. Hall (Jr.), The Theory of Groups, The Macmillan Company, 1959 | MR | Zbl
[13] Chr. Hankin, Lambda Calculi: A Guide for Computer Scientists, Clarendon Press, Oxford, 1994 | MR | Zbl
[14] J. Heather, G. Lowe, S. Schneider, “How to prevent type flaw attacks on security protocols”, J. Comp. Sec., 11:2 (2003), 217–244
[15] J. Hoffstein, J. Pipher, J. H. Silverman, An introduction to mathematical cryptography, Springer, New York, 2008 | MR | Zbl
[16] G. Huet, C. Derek, Oppen, Equations and Rewrite Rules: A Survey, Technical report, Stanford University, 1980
[17] A. Mahalanobis, “The MOR cryptosystem and finite $p$-groups”, Contemp. Math., 633 (2015), 81–95 | DOI | MR | Zbl
[18] A. Martelli, U. Montanari, “An Efficient Unification Algorithm”, ACM Trans. Program. Lang. Syst., 4:2 (1982), 258–282 | DOI | Zbl
[19] F. Lindblad, M. Benke, “A Tool for Automated Theorem Proving in Agda”, Types for Proofs and Programs, TYPES 2004, Lecture Notes in Computer Science, 3839, eds. Paulin-Mohring C., Werner B., Springer, Berlin–Heidelberg, 2006 | MR | Zbl
[20] Z. Luo, Computation and Reasoning, Int. Series Monogr. Comp. Sci., 11, Oxford Science Publications, Clarendon Press, Oxford, UK, 1994 | MR | Zbl
[21] Neil Mitchell et al., Hoogle: Haskell API search engine, https://github.com/ndmitchell/hoogle
[22] M. Rittri, “Using Types as Search Keys in Function Libraries”, Proceedings of the fourth international conference on Functional programming languages and computer architecture, 1989, 174–183
[23] M. Rittri, “Retrieving library functions by unifying types modulo linear isomorphism”, Theor. Inform. Applic., 27 (1993), 71–89 | DOI
[24] C. Runciman, I. Toyn, “Retrieving reusable software components by polymorphic type”, J. Func. Progr., 1:2 (1991), 191–211 | MR | Zbl
[25] S. Soloviev, “On Isomorphism of Dependent Products in a Typed Logical Framework”, Post-proceedings of TYPES 2014, LIPICS, 39, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015, 275–288 | MR
[26] S. Soloviev, “Automorphisms of Types in Certain Type Theories and Representation of Finite Groups”, Math. Struct. Comp. Sci., 2018 (to appear)
[27] A. T. White, Graphs, Groups and Surfaces, North-Holland, Amsterdam, 1984 | MR | Zbl