On some special functions over finite fields
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 281-286
Cet article a éte moissonné depuis la source Math-Net.Ru
A finite fields analogues of the classical error function and incomplete gamma function are defined as complex functions over finite fields.
@article{ZNSL_2018_468_a18,
author = {N. V. Proskurin},
title = {On some special functions over finite fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {281--286},
year = {2018},
volume = {468},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a18/}
}
N. V. Proskurin. On some special functions over finite fields. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 281-286. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a18/
[1] J. Greene, “Hypergeometric functions over finite fields”, Transactions of the American Math. Soc., 301:1 (1987), 77–101 | DOI | MR | Zbl
[2] R. J. Evans, “Hermite character sums”, Pacific Journal of Mathematics, 122:2 (1986), 357–390 | DOI | MR | Zbl
[3] W. N. Bailey, Generalized hypergeometric series, Hafner, New York, 1964 | MR
[4] F. W. J. Olver, Introduction to asymptotics and special functions, Academic Press, 1974 | MR | Zbl
[5] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, 87, Springer, 1982 | DOI | MR