Foliation of the space $\mathfrak{sl}^*(n,\mathbb R)$ on coadjoint orbits
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 267-280

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for the construction of parameters on coadjoint orbits in $\mathfrak{sl}^*(n,\mathbb R)$ is suggested. The method is based on the fact that the parameters are invariant with respect to the action of vector fields normal relative to the Killing form to the tangent space of an orbit. The construction of parameters is reduced to the solution of a homogeneous system of linear equations.
@article{ZNSL_2018_468_a17,
     author = {Yu. Palii},
     title = {Foliation of the space $\mathfrak{sl}^*(n,\mathbb R)$ on coadjoint orbits},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {267--280},
     publisher = {mathdoc},
     volume = {468},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a17/}
}
TY  - JOUR
AU  - Yu. Palii
TI  - Foliation of the space $\mathfrak{sl}^*(n,\mathbb R)$ on coadjoint orbits
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 267
EP  - 280
VL  - 468
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a17/
LA  - ru
ID  - ZNSL_2018_468_a17
ER  - 
%0 Journal Article
%A Yu. Palii
%T Foliation of the space $\mathfrak{sl}^*(n,\mathbb R)$ on coadjoint orbits
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 267-280
%V 468
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a17/
%G ru
%F ZNSL_2018_468_a17
Yu. Palii. Foliation of the space $\mathfrak{sl}^*(n,\mathbb R)$ on coadjoint orbits. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 267-280. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a17/