Foliation of the space $\mathfrak{sl}^*(n,\mathbb R)$ on coadjoint orbits
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 267-280
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A method for the construction of parameters on coadjoint orbits in $\mathfrak{sl}^*(n,\mathbb R)$ is suggested. The method is based on the fact that the parameters are invariant with respect to the action of vector fields normal relative to the Killing form to the tangent space of an orbit. The construction of parameters is reduced to the solution of a homogeneous system of linear equations.
@article{ZNSL_2018_468_a17,
     author = {Yu. Palii},
     title = {Foliation of the space $\mathfrak{sl}^*(n,\mathbb R)$ on coadjoint orbits},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {267--280},
     year = {2018},
     volume = {468},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a17/}
}
TY  - JOUR
AU  - Yu. Palii
TI  - Foliation of the space $\mathfrak{sl}^*(n,\mathbb R)$ on coadjoint orbits
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 267
EP  - 280
VL  - 468
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a17/
LA  - ru
ID  - ZNSL_2018_468_a17
ER  - 
%0 Journal Article
%A Yu. Palii
%T Foliation of the space $\mathfrak{sl}^*(n,\mathbb R)$ on coadjoint orbits
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 267-280
%V 468
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a17/
%G ru
%F ZNSL_2018_468_a17
Yu. Palii. Foliation of the space $\mathfrak{sl}^*(n,\mathbb R)$ on coadjoint orbits. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 267-280. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a17/

[1] A. A. Kirillov, Lektsii po metodu orbit, Nauchnaya kniga, Novosibirsk, 2002

[2] P. Molino, Riemannian Foliations, Birkäuser, Boston, 1988 | MR | Zbl

[3] J. A. Schouten, Ricci Calculus, Springer-Verlag, Berlin–Heidelberg, 1954 | MR | Zbl

[4] P. M. Michor, Topics in differential geometry, AMS, 2008 | MR | Zbl

[5] B. Sturmfels, Algorithms in Invariant Theory, 2nd edition, Springer-Verlag, 2008 | MR | Zbl

[6] N. Kh. Ibragimov, Prakticheskii kurs differentsialnykh uravnenii i matematicheskogo modelirovaniya. Klassicheskie i novye metody. Nelineinye matematicheskie modeli. Simmetriya i printsipy invariantnosti, Izdatelstvo Nizhnegorodskogo universiteta im. N. I. Lobachevskogo, Nizhnii Novgorod, 2007

[7] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, N.Y., 1978 | MR | Zbl

[8] Yu. Palii, “A method for construction of Lie group invariants”, J. Math. Sci., 200:6 (2014), 725–733 | DOI | MR | Zbl

[9] M. Abud, G. Sartori, “The geometry of orbit-space and natural minima of Higgs potentials”, Phys. Lett. B, 104 (1981), 147–152 | DOI | MR