Voir la notice du chapitre de livre
@article{ZNSL_2018_468_a17,
author = {Yu. Palii},
title = {Foliation of the space $\mathfrak{sl}^*(n,\mathbb R)$ on coadjoint orbits},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {267--280},
year = {2018},
volume = {468},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a17/}
}
Yu. Palii. Foliation of the space $\mathfrak{sl}^*(n,\mathbb R)$ on coadjoint orbits. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 267-280. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a17/
[1] A. A. Kirillov, Lektsii po metodu orbit, Nauchnaya kniga, Novosibirsk, 2002
[2] P. Molino, Riemannian Foliations, Birkäuser, Boston, 1988 | MR | Zbl
[3] J. A. Schouten, Ricci Calculus, Springer-Verlag, Berlin–Heidelberg, 1954 | MR | Zbl
[4] P. M. Michor, Topics in differential geometry, AMS, 2008 | MR | Zbl
[5] B. Sturmfels, Algorithms in Invariant Theory, 2nd edition, Springer-Verlag, 2008 | MR | Zbl
[6] N. Kh. Ibragimov, Prakticheskii kurs differentsialnykh uravnenii i matematicheskogo modelirovaniya. Klassicheskie i novye metody. Nelineinye matematicheskie modeli. Simmetriya i printsipy invariantnosti, Izdatelstvo Nizhnegorodskogo universiteta im. N. I. Lobachevskogo, Nizhnii Novgorod, 2007
[7] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, N.Y., 1978 | MR | Zbl
[8] Yu. Palii, “A method for construction of Lie group invariants”, J. Math. Sci., 200:6 (2014), 725–733 | DOI | MR | Zbl
[9] M. Abud, G. Sartori, “The geometry of orbit-space and natural minima of Higgs potentials”, Phys. Lett. B, 104 (1981), 147–152 | DOI | MR