Links from second-order Fuchsian equations to first-order linear systems
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 221-227 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The number of parameters in the linear Fuchsian system with four singularities is larger than that in the second-order Fuchsian equation with the same singularities. Hence, in order to find a relation between the given system and the equation it is needed to simplify the matrices – residues at finite Fuchsian singularities. The way to do it is studied. Such approach gives also the possibility to find the relation between the use of the antiquantization procedure and the isomonodromic property for derivation the Painlevé equation $P^{VI}$.
@article{ZNSL_2018_468_a14,
     author = {M. V. Babich and S. Yu. Slavyanov},
     title = {Links from second-order {Fuchsian} equations to first-order linear systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {221--227},
     year = {2018},
     volume = {468},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a14/}
}
TY  - JOUR
AU  - M. V. Babich
AU  - S. Yu. Slavyanov
TI  - Links from second-order Fuchsian equations to first-order linear systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 221
EP  - 227
VL  - 468
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a14/
LA  - ru
ID  - ZNSL_2018_468_a14
ER  - 
%0 Journal Article
%A M. V. Babich
%A S. Yu. Slavyanov
%T Links from second-order Fuchsian equations to first-order linear systems
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 221-227
%V 468
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a14/
%G ru
%F ZNSL_2018_468_a14
M. V. Babich; S. Yu. Slavyanov. Links from second-order Fuchsian equations to first-order linear systems. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 221-227. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a14/

[1] S. Yu. Slavyanov, V. Lai, Spetsialnye funktsii: edinaya teoriya, osnovannaya na analize singulyarnostei, Nevskii dialekt, SPb., 2002

[2] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989

[3] M. V. Babich, “O kanonicheskoi parametrizatsii fazovykh prostranstv uravnenii izomonodromnykh deformatsii fuksovykh sistem, sluchai $2\times2$. Vyvod uravneniya Penleve VI”, UMN, 64:1(385) (2009), 51–134 | DOI | MR | Zbl

[4] M. V. Babich, “Isomonodromic Deformations and Painlevé Equations”, Constructive Approximation, 41:3 (2015), 335–356 | DOI | MR | Zbl

[5] S. Yu. Slavyanov, “Painlevé equations as classical analogues of Heun equations”, J. Phys. A Math. Gen., 29 (1996), 7329–7335 | DOI | MR | Zbl

[6] S. Yu. Slavyanov, “Antikvantovanie i sootvetstvuyuschie simmetrii”, TMF, 185:1 (2015), 186–191 | DOI | MR

[7] S. Yu. Slavyanov, O. L. Stesik, “Antikvantovanie deformirovannykh uravnenii klassa Goina”, TMF, 186:1 (2016), 142–151 | DOI | MR