@article{ZNSL_2018_468_a14,
author = {M. V. Babich and S. Yu. Slavyanov},
title = {Links from second-order {Fuchsian} equations to first-order linear systems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {221--227},
year = {2018},
volume = {468},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a14/}
}
M. V. Babich; S. Yu. Slavyanov. Links from second-order Fuchsian equations to first-order linear systems. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 221-227. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a14/
[1] S. Yu. Slavyanov, V. Lai, Spetsialnye funktsii: edinaya teoriya, osnovannaya na analize singulyarnostei, Nevskii dialekt, SPb., 2002
[2] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989
[3] M. V. Babich, “O kanonicheskoi parametrizatsii fazovykh prostranstv uravnenii izomonodromnykh deformatsii fuksovykh sistem, sluchai $2\times2$. Vyvod uravneniya Penleve VI”, UMN, 64:1(385) (2009), 51–134 | DOI | MR | Zbl
[4] M. V. Babich, “Isomonodromic Deformations and Painlevé Equations”, Constructive Approximation, 41:3 (2015), 335–356 | DOI | MR | Zbl
[5] S. Yu. Slavyanov, “Painlevé equations as classical analogues of Heun equations”, J. Phys. A Math. Gen., 29 (1996), 7329–7335 | DOI | MR | Zbl
[6] S. Yu. Slavyanov, “Antikvantovanie i sootvetstvuyuschie simmetrii”, TMF, 185:1 (2015), 186–191 | DOI | MR
[7] S. Yu. Slavyanov, O. L. Stesik, “Antikvantovanie deformirovannykh uravnenii klassa Goina”, TMF, 186:1 (2016), 142–151 | DOI | MR