@article{ZNSL_2018_468_a13,
author = {E. A. Ayryan and M. D. Malykh and L. A. Sevastyanov},
title = {Differential schemes for the ordinary differential equations defining a~projective correspondence between layers},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {202--220},
year = {2018},
volume = {468},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a13/}
}
TY - JOUR AU - E. A. Ayryan AU - M. D. Malykh AU - L. A. Sevastyanov TI - Differential schemes for the ordinary differential equations defining a projective correspondence between layers JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 202 EP - 220 VL - 468 UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a13/ LA - ru ID - ZNSL_2018_468_a13 ER -
%0 Journal Article %A E. A. Ayryan %A M. D. Malykh %A L. A. Sevastyanov %T Differential schemes for the ordinary differential equations defining a projective correspondence between layers %J Zapiski Nauchnykh Seminarov POMI %D 2018 %P 202-220 %V 468 %U http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a13/ %G ru %F ZNSL_2018_468_a13
E. A. Ayryan; M. D. Malykh; L. A. Sevastyanov. Differential schemes for the ordinary differential equations defining a projective correspondence between layers. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 202-220. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a13/
[1] J. Moses, Symbolic integration, MIT, 1967 | MR
[2] G. N. Vatson, Teoriya besselevykh funktsii., v. 1, IL, Moskva, 1949
[3] A. Gorieli, Integriruemost i singulyarnost, R C, Moskva–Izhevsk, 2006
[4] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, GITTL, Moskva–Leningrad, 1950 | MR
[5] E. S. Cheb-Terrab, T. Kolokolnikov, “First order odes, symmetries and linear transformations”, European J. Applied Mathematics, 14:2 (2003), 231–246 | DOI | MR | Zbl
[6] A. N. Krylov, Lektsii o priblizhennykh vychisleniyakh, AN SSSR, Leningrad, 1933
[7] E. A. Al'shina, N. N. Kalitkin, P. V. Koryakin, “The singularity diagnostic in calculations with accuracy control”, Comp. Math. and Math. Phys., 45:10 (2005), 1769–1779 | Zbl
[8] A. A. Belov, “Chislennoe obnaruzhenie i issledovanie singulyarnostei resheniya differentsialnykh uravnenii”, Doklady Akademii nauk, 467:1 (2016), 21–25 | DOI
[9] M. D. Malykh, “O priblizhennom reshenii differentsialnykh uravnenii, obschee reshenie kotorykh zavisit ot konstanty algebraicheski”, Vestnik RUDN. Ser. matematika, informatika, fizika, 2015, no. 3, 5–9
[10] L. Cremona, Introduzione ad una teoria geometrica delle curve piane, Gamberini e Parmeggiani, Bologna, 1862
[11] K. Zigel, Yu. Mozer, Lektsii po nebesnoi mekhanike, R C, 2001
[12] L. Schlesinger, Vorlesungen uber lineare Differentialgleichungen, Teubner, Leipzig–Berlin, 1908 | Zbl
[13] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR
[14] H. Umemura, “Birational automorphism groups and differential equations”, Nagoya Math. J., 119 (1990), 1–80 | DOI | MR | Zbl
[15] M. D. Malykh, “O transtsendentnykh funktsiyakh, voznikayuschikh pri integrirovanii differentsialnykh uravnenii v konechnom vide”, Zap. nauchn. semin. POMI, 432, 2015, 196–223 | Zbl
[16] M. D. Malykh, “O differentsialnykh uravneniyakh, obschee reshenie kotorykh yavlyaetsya algebraicheskoi funktsiei konstanty”, Vestnik NIYaU MIFI, 5:2 (2016), 152–161 | DOI
[17] Yu. B. Suris, “Gamiltonovy metody tipa Runge–Kutty i ikh variatsionnaya traktovka”, Matematicheskoe modelirovanie, 2:4 (1990), 78–87 | MR | Zbl
[18] M. N. Gevorkyan, “Konkretnye realizatsii simplekticheskikh chislennykh metodov”, Vestnik RUDN, Informatika. Matematika. Fizika, 2013, no. 1, 89–96
[19] E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, Springer series in computational mathematics, Springer, 2006 | MR | Zbl
[20] J. M. Sanz-Serna, “Symplectic Runge-Kutta Schemes for Adjoint Equations, Automatic Differentiation, Optimal Control, and More”, SIAM Review, 58:1 (2016), 3–33 | DOI | MR | Zbl