Differential schemes for the ordinary differential equations defining a projective correspondence between layers
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 202-220 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is well known that there are remarkable differential equations which can be integrated in CAS, but there are several inequivalent approaches for description of these differential equations. In our work we want to discuss remarkable differential equations in another sense: for these equations there exist finite difference schemes which conserve algebraic properties of solutions exactly. It should be noted that this class of differential equations coincides with the class introduced by Painlevé. In terms of Cauchy problem a differential equation of this class defines an algebraic correspondence between initial and terminal values. For example Riccati equation $y'=p(x)y^2+q(x)y+r(x)$ defines one-to-one correspondence between initial and terminal values of $y$ on projective line. However, standard finite difference schemes do not conserve this algebraic property of exact solution. Furthermore, the scheme, which defines one-to-one correspondence between layers, truly describes solution not only before but also after mobile singularities and conserves algebraic properties of equations like the anharmonic ratio. After necessary introduction (sections 1 and 2) we describe such one-to-one scheme for Riccati equation and prove its properties mentioned above.
@article{ZNSL_2018_468_a13,
     author = {E. A. Ayryan and M. D. Malykh and L. A. Sevastyanov},
     title = {Differential schemes for the ordinary differential equations defining a~projective correspondence between layers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {202--220},
     year = {2018},
     volume = {468},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a13/}
}
TY  - JOUR
AU  - E. A. Ayryan
AU  - M. D. Malykh
AU  - L. A. Sevastyanov
TI  - Differential schemes for the ordinary differential equations defining a projective correspondence between layers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 202
EP  - 220
VL  - 468
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a13/
LA  - ru
ID  - ZNSL_2018_468_a13
ER  - 
%0 Journal Article
%A E. A. Ayryan
%A M. D. Malykh
%A L. A. Sevastyanov
%T Differential schemes for the ordinary differential equations defining a projective correspondence between layers
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 202-220
%V 468
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a13/
%G ru
%F ZNSL_2018_468_a13
E. A. Ayryan; M. D. Malykh; L. A. Sevastyanov. Differential schemes for the ordinary differential equations defining a projective correspondence between layers. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 202-220. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a13/

[1] J. Moses, Symbolic integration, MIT, 1967 | MR

[2] G. N. Vatson, Teoriya besselevykh funktsii., v. 1, IL, Moskva, 1949

[3] A. Gorieli, Integriruemost i singulyarnost, R C, Moskva–Izhevsk, 2006

[4] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, GITTL, Moskva–Leningrad, 1950 | MR

[5] E. S. Cheb-Terrab, T. Kolokolnikov, “First order odes, symmetries and linear transformations”, European J. Applied Mathematics, 14:2 (2003), 231–246 | DOI | MR | Zbl

[6] A. N. Krylov, Lektsii o priblizhennykh vychisleniyakh, AN SSSR, Leningrad, 1933

[7] E. A. Al'shina, N. N. Kalitkin, P. V. Koryakin, “The singularity diagnostic in calculations with accuracy control”, Comp. Math. and Math. Phys., 45:10 (2005), 1769–1779 | Zbl

[8] A. A. Belov, “Chislennoe obnaruzhenie i issledovanie singulyarnostei resheniya differentsialnykh uravnenii”, Doklady Akademii nauk, 467:1 (2016), 21–25 | DOI

[9] M. D. Malykh, “O priblizhennom reshenii differentsialnykh uravnenii, obschee reshenie kotorykh zavisit ot konstanty algebraicheski”, Vestnik RUDN. Ser. matematika, informatika, fizika, 2015, no. 3, 5–9

[10] L. Cremona, Introduzione ad una teoria geometrica delle curve piane, Gamberini e Parmeggiani, Bologna, 1862

[11] K. Zigel, Yu. Mozer, Lektsii po nebesnoi mekhanike, R C, 2001

[12] L. Schlesinger, Vorlesungen uber lineare Differentialgleichungen, Teubner, Leipzig–Berlin, 1908 | Zbl

[13] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR

[14] H. Umemura, “Birational automorphism groups and differential equations”, Nagoya Math. J., 119 (1990), 1–80 | DOI | MR | Zbl

[15] M. D. Malykh, “O transtsendentnykh funktsiyakh, voznikayuschikh pri integrirovanii differentsialnykh uravnenii v konechnom vide”, Zap. nauchn. semin. POMI, 432, 2015, 196–223 | Zbl

[16] M. D. Malykh, “O differentsialnykh uravneniyakh, obschee reshenie kotorykh yavlyaetsya algebraicheskoi funktsiei konstanty”, Vestnik NIYaU MIFI, 5:2 (2016), 152–161 | DOI

[17] Yu. B. Suris, “Gamiltonovy metody tipa Runge–Kutty i ikh variatsionnaya traktovka”, Matematicheskoe modelirovanie, 2:4 (1990), 78–87 | MR | Zbl

[18] M. N. Gevorkyan, “Konkretnye realizatsii simplekticheskikh chislennykh metodov”, Vestnik RUDN, Informatika. Matematika. Fizika, 2013, no. 1, 89–96

[19] E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, Springer series in computational mathematics, Springer, 2006 | MR | Zbl

[20] J. M. Sanz-Serna, “Symplectic Runge-Kutta Schemes for Adjoint Equations, Automatic Differentiation, Optimal Control, and More”, SIAM Review, 58:1 (2016), 3–33 | DOI | MR | Zbl