@article{ZNSL_2018_468_a12,
author = {V. Abgaryan and A. Khvedelidze and A. Torosyan},
title = {On moduli space of the {Wigner} quasiprobability distributions for $N$-dimensional quantum systems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {177--201},
year = {2018},
volume = {468},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a12/}
}
TY - JOUR AU - V. Abgaryan AU - A. Khvedelidze AU - A. Torosyan TI - On moduli space of the Wigner quasiprobability distributions for $N$-dimensional quantum systems JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 177 EP - 201 VL - 468 UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a12/ LA - en ID - ZNSL_2018_468_a12 ER -
%0 Journal Article %A V. Abgaryan %A A. Khvedelidze %A A. Torosyan %T On moduli space of the Wigner quasiprobability distributions for $N$-dimensional quantum systems %J Zapiski Nauchnykh Seminarov POMI %D 2018 %P 177-201 %V 468 %U http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a12/ %G en %F ZNSL_2018_468_a12
V. Abgaryan; A. Khvedelidze; A. Torosyan. On moduli space of the Wigner quasiprobability distributions for $N$-dimensional quantum systems. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 177-201. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a12/
[1] Johann v. Neumann, Mathematische Grundlagen der Quantenmechanik, Verlang von Julius Springer, Berlin, 1932 | MR
[2] H. Weyl, Gruppentheorie und Quantenmechanik, Hirzel-Verlag, Leipzig, 1928 | MR | Zbl
[3] E. P. Wigner, “On the quantum correction for thermodynamic equilibrium”, Phys. Rev., 40 (1932), 749–759 | DOI | Zbl
[4] K. Husimi, “Some formal properties of the density matrix”, Proc. Phys. Math. Soc. Japan, 22 (1940), 264–314 | Zbl
[5] H. J. Groenewold, “On the principles of elementary quantum mechanics”, Physica, 12 (1946), 405–460 | DOI | MR | Zbl
[6] J. E. Moyal, “Quantum mechanics as a statistical theory”, Mathematical Proceedings of the Cambridge Philosophical Society, 45 (1949), 99–124 | DOI | MR | Zbl
[7] G. Dito, D. Sternheimer, Deformation quantization: genesis, developments and metamorphoses, 2002, arXiv: math/0201168 | MR | Zbl
[8] E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams”, Phys. Rev. Lett., 10 (1963), 277–279 | DOI | MR | Zbl
[9] R. J. Glauber, “Coherent and incoherent states of the radiation field”, Phys. Rev., 131 (1963), 2766–2788 | DOI | MR | Zbl
[10] M. Hillery, R. F. O'Connell, M. O. Scully, E. P. Wigner, “Distribution functions in physics: Fundamentals”, Phys. Rep., 106 (1984), 121–167 | DOI | MR
[11] D. J. Rowe, B. C. Sanders, H. de Guise, “Representations of the Weyl group and Wigner functions for SU(3)”, J. Math. Phys., 40 (1999), 3604 | DOI | MR | Zbl
[12] S. Chumakov, A. Klimov, K. B. Wolf, “Connection between two Wigner functions for spin systems”, Phys. Rev. A, 61 (2000), 034101 | DOI
[13] M. A. Alonso, G. S. Pogosyan, K. B. Wolf, “Wigner functions for curved spaces”, J. Math. Phys., 43 (2002), 5857 | DOI | MR | Zbl
[14] A. I. Lvovsky, M. G. Raymer, “Continuous-variable optical quantum-state tomography”, Rev. Mod. Phys., 81 (2009), 299–332 | DOI
[15] A. B. Klimov, H. de Guise, “General approach to $\mathfrak{GU}(n)$ quasi-distribution functions”, J. Phys. A, 43 (2010), 402001 | DOI | MR | Zbl
[16] I. Rigas, L. L. Sánchez-Soto, A. B. Klimov, J. Rehacek, Z. Hradil, “Orbital angular momentum in phase space”, Ann. Phys., 326 (2011), 426–439 | DOI | MR | Zbl
[17] T. Tilma, M. J. Everitt, J. H. Samson, W. J. Munro, K. Nemoto, “Wigner functions for arbitrary quantum systems”, Phys. Rev. Lett., 117 (2016), 180401 | DOI
[18] A. B. Klimov, J. L. Romero, H. de Guise, “Generalized SU(2) covariant Wigner functions and some of their applications”, J. Phys. A, 50 (2017), 323001 | DOI | MR | Zbl
[19] M. O. Scully, M. S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge, 2006
[20] I. Bengtsson, K. E. Życzkowski, Geometry of Quantum States. An Introduction to Quantum Entanglement, 2nd Edition, Cambridge University Press, Cambridge, 2017 | MR | Zbl
[21] R. P. Feynman, “Negative Probaility”, Quantum Implications, Essays in Honour of David Bohm, eds. Basil J. Hiley, D. Peat, Methuen, 1987, 235–248 | MR
[22] R. L. Stratonovich, “On distributions in representation space”, Sov. Phys. JETP, 4:6 (1957), 891–898 | MR
[23] C. Briff, A. Mann, “Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries”, Phys. Rev., 59 (1999), 971 | DOI | MR
[24] A. Khvedelidze, V. Abgaryan, On the Family of Wigner Functions for $N$-Level Quantum System, 2018, arXiv: 1708.05981
[25] A. A. Kirillov, Lectures on the Orbit Method, Graduate Studies in Mathematics, 64, Amer. Math. Soc., 2004 | DOI | MR | Zbl
[26] D. Weingarten, “Asymptotic behavior of group integrals in the limit of infinite rank”, J. Mat. Phys., 19 (1978), 999–1001 | DOI | MR | Zbl
[27] B. Collins, “Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability”, Int. Math. Res. Not., 17 (2003), 953–982 | DOI | MR | Zbl
[28] B. Collins, P. Sniady, “Integration with respect to the Haar measure on unitary, orthogonal and symplectic group”, Comm. Math. Phys., 264:3 (2006), 773–795 | DOI | MR | Zbl
[29] A. Luis, “A SU(3) Wigner function for three-dimensional systems”, J. Phys. A, 41 (2008), 495302 | DOI | MR | Zbl
[30] V. I. Arnold, “Remarks on eigenvalues and eigenvectors of Hermitian matrices, Berry phase, adiabatic connections and quantum Hall effect”, Selecta Mathematica, New Series, 1:1 (1995), 1–19 | DOI | MR | Zbl