The asymptotics of traces of paths in the Young and Schur graphs
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 126-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G$ be a graded graph with levels $V_0,V_1,\dots$. Fix $m$ and choose a vertex $v$ in $V_n$, where $n\ge m$. Consider the uniform measure on the paths from $V_0$ to the vertex $v$. Each such path has a unique vertex at the level $V_m$, and so a measure $\nu_v^m$ on $V_m$ is induced. It is natural to expect that such measures have a limit as the vertex $v$ goes to infinity in some “regular” way. We prove this (and compute the limit) for the Young and Schur graphs, for which regularity is understood as follows: the proportion of boxes contained in the first row and the first column goes to $0$. For the Young graph, this was essentially proved by Vershik and Kerov in 1981; our proof is more straightforward and elementary.
@article{ZNSL_2018_468_a10,
     author = {F. V. Petrov},
     title = {The asymptotics of traces of paths in the {Young} and {Schur} graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {126--137},
     year = {2018},
     volume = {468},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a10/}
}
TY  - JOUR
AU  - F. V. Petrov
TI  - The asymptotics of traces of paths in the Young and Schur graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 126
EP  - 137
VL  - 468
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a10/
LA  - ru
ID  - ZNSL_2018_468_a10
ER  - 
%0 Journal Article
%A F. V. Petrov
%T The asymptotics of traces of paths in the Young and Schur graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 126-137
%V 468
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a10/
%G ru
%F ZNSL_2018_468_a10
F. V. Petrov. The asymptotics of traces of paths in the Young and Schur graphs. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 126-137. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a10/

[1] K. G. Jacobi, “Theoremata nova algebraica circa systema duarum aequationum inter duas variabiles propositarum”, J. Reine Angew. Math., 14 (1835), 281–288 | DOI | MR | Zbl

[2] A. M. Vershik, S. V. Kerov, “Asimptotika mery Plansherelya simmetricheskoi gruppy i predelnaya forma tablits Yunga”, DAN SSSR, 233:6 (1977), 1024–1027 | MR | Zbl

[3] A. M. Vershik, S. V. Kerov, “Asimptoticheskaya teoriya kharakterov simmetricheskoi gruppy”, Funkts. anal. i pril., 15:4 (1981), 15–27 | MR | Zbl

[4] A. M. Borodin, “Multiplikativnye tsentralnye mery na grafe Shura”, Zap. nauchn. sem. POMI, 240, 1997, 44–52 | MR | Zbl

[5] V. N. Ivanov, “Razmernost kosykh sdvinutykh diagramm Yunga i proektivnye kharaktery beskonechnoi simmetricheskoi gruppy”, Zap. nauchn. sem. POMI, 240, 1997, 115–135 | MR | Zbl

[6] A. Yu. Okunkov, G. I. Olshanskii, “Sdvinutye funktsii Shura”, Algebra i analiz, 9:2 (1997), 73–146 | MR | Zbl

[7] N. Alon, “Combinatorial Nullstellensatz”, Combin. Probab. Comput., 8 (1999), 7–29 | DOI | MR | Zbl

[8] G. Olshanski, A. Regev, A. Vershik, “Frobenius–Schur functions, with appendix by V. Ivanov”, Studies in Memory of Issai Schur, Progress in Math., 210, 2003, 251–299 | MR | Zbl

[9] U. Schauz, “Algebraically solvable problems: describing polynomials as equivalent to explicit solutions”, Electron. J. Combin., 15 (2008), #R10 | MR | Zbl

[10] M. Lasoń, “A generalization of combinatorial Nullstellensatz”, Electron. J. Combin., 17 (2010), #N32 | MR | Zbl

[11] R. N. Karasev, F. V. Petrov, “Partitions of nonzero elements of a finite field into pairs”, Israel J. Math., 192 (2012), 143–156 | DOI | MR | Zbl

[12] F. Petrov, “Polynomial approach to explicit formulae for generalized binomial coefficients”, European J. Math., 2:2 (2016), 444–458 | DOI | MR | Zbl