Quantum Markov states and quantum hidden Markov states
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 13-23

Voir la notice de l'article provenant de la source Math-Net.Ru

The present article is a continuation of our previous paper “Remarks on quantum Markov states” (Funct. Anal. Appl. 49, No. 3 (2015), 205–209). We prove some propositions from that paper and define quantum Markov states and quantum hidden Markov states. Some connections are established with other definitions of these notions. We consider such states for lattices and graphs. We also consider an example with the Cayley tree.
@article{ZNSL_2018_468_a1,
     author = {Z. I. Bezhaeva and V. I. Oseledets},
     title = {Quantum {Markov} states and quantum hidden {Markov} states},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {13--23},
     publisher = {mathdoc},
     volume = {468},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a1/}
}
TY  - JOUR
AU  - Z. I. Bezhaeva
AU  - V. I. Oseledets
TI  - Quantum Markov states and quantum hidden Markov states
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 13
EP  - 23
VL  - 468
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a1/
LA  - ru
ID  - ZNSL_2018_468_a1
ER  - 
%0 Journal Article
%A Z. I. Bezhaeva
%A V. I. Oseledets
%T Quantum Markov states and quantum hidden Markov states
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 13-23
%V 468
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a1/
%G ru
%F ZNSL_2018_468_a1
Z. I. Bezhaeva; V. I. Oseledets. Quantum Markov states and quantum hidden Markov states. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 13-23. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a1/