An announce of results linking Kolmogorov complexity to entropy for amenable group actions
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 7-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We announce a generalization of Brudno's results on the relation between the Kolmogorov complexity and the entropy of a subshift for actions of computable amenable groups.
@article{ZNSL_2018_468_a0,
     author = {A. V. Alpeev},
     title = {An announce of results linking {Kolmogorov} complexity to entropy for amenable group actions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--12},
     year = {2018},
     volume = {468},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a0/}
}
TY  - JOUR
AU  - A. V. Alpeev
TI  - An announce of results linking Kolmogorov complexity to entropy for amenable group actions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 7
EP  - 12
VL  - 468
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a0/
LA  - en
ID  - ZNSL_2018_468_a0
ER  - 
%0 Journal Article
%A A. V. Alpeev
%T An announce of results linking Kolmogorov complexity to entropy for amenable group actions
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 7-12
%V 468
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a0/
%G en
%F ZNSL_2018_468_a0
A. V. Alpeev. An announce of results linking Kolmogorov complexity to entropy for amenable group actions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 7-12. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a0/

[1] A. Alpeev, Kolmogorov complexity and the garden of Eden theorem, 2012, arXiv: 1212.1901

[2] A. Alpeev, Entropy and Kolmogorov complexity for subshifts over amenable groups, Master's thesis, unpublished, 2013

[3] A. Bernshteyn, Measurable versions of the Lovász Local Lemma and measurable graph colorings, 2016, arXiv: 1604.07349

[4] A. A. Brudno, “Topological entropy, and complexity in the sense of A. N. Kolmogorov”, Uspekhi Mat. Nauk, 29:6(180) (1974), 157–158 | MR | Zbl

[5] A. A. Brudno, “The complexity of the trajectories of a dynamical system”, Uspekhi Mat. Nauk, 33:1(199) (1978), 207–208 | MR | Zbl

[6] A. A. Brudno, “Entropy and the complexity of the trajectories of a dynamical system”, Tr. Mosk. Mat. Obs., 44, 1982, 124–149 | MR | Zbl

[7] M. Einsiedler, T. Ward, Ergodic Theory with a View Towards Number Theory, Springer, London, 2011 | MR | Zbl

[8] E. Glasner, Ergodic Theory via Joinings, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[9] A. N. Kolmogorov, “Three approaches to the definition of information”, Probl. Peredachi Inform., 1:1 (1965), 3–11 | MR | Zbl

[10] N. Moriakov, Computable Følner monotilings and a theorem of Brudno I, 2015, arXiv: 1509.07858

[11] N. Moriakov, Computable Følner monotilings and a theorem of Brudno II, 2015, arXiv: 1510.03833

[12] S. G. Simpson, “Symbolic dynamics: entropy=dimension=complexity”, Theory Comput. Syst., 56:3 (2015), 527–543 | DOI | MR | Zbl