An announce of results linking Kolmogorov complexity to entropy for amenable group actions
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 7-12

Voir la notice de l'article provenant de la source Math-Net.Ru

We announce a generalization of Brudno's results on the relation between the Kolmogorov complexity and the entropy of a subshift for actions of computable amenable groups.
@article{ZNSL_2018_468_a0,
     author = {A. V. Alpeev},
     title = {An announce of results linking {Kolmogorov} complexity to entropy for amenable group actions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--12},
     publisher = {mathdoc},
     volume = {468},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a0/}
}
TY  - JOUR
AU  - A. V. Alpeev
TI  - An announce of results linking Kolmogorov complexity to entropy for amenable group actions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 7
EP  - 12
VL  - 468
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a0/
LA  - en
ID  - ZNSL_2018_468_a0
ER  - 
%0 Journal Article
%A A. V. Alpeev
%T An announce of results linking Kolmogorov complexity to entropy for amenable group actions
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 7-12
%V 468
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a0/
%G en
%F ZNSL_2018_468_a0
A. V. Alpeev. An announce of results linking Kolmogorov complexity to entropy for amenable group actions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 7-12. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a0/