@article{ZNSL_2018_468_a0,
author = {A. V. Alpeev},
title = {An announce of results linking {Kolmogorov} complexity to entropy for amenable group actions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--12},
year = {2018},
volume = {468},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a0/}
}
A. V. Alpeev. An announce of results linking Kolmogorov complexity to entropy for amenable group actions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 7-12. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a0/
[1] A. Alpeev, Kolmogorov complexity and the garden of Eden theorem, 2012, arXiv: 1212.1901
[2] A. Alpeev, Entropy and Kolmogorov complexity for subshifts over amenable groups, Master's thesis, unpublished, 2013
[3] A. Bernshteyn, Measurable versions of the Lovász Local Lemma and measurable graph colorings, 2016, arXiv: 1604.07349
[4] A. A. Brudno, “Topological entropy, and complexity in the sense of A. N. Kolmogorov”, Uspekhi Mat. Nauk, 29:6(180) (1974), 157–158 | MR | Zbl
[5] A. A. Brudno, “The complexity of the trajectories of a dynamical system”, Uspekhi Mat. Nauk, 33:1(199) (1978), 207–208 | MR | Zbl
[6] A. A. Brudno, “Entropy and the complexity of the trajectories of a dynamical system”, Tr. Mosk. Mat. Obs., 44, 1982, 124–149 | MR | Zbl
[7] M. Einsiedler, T. Ward, Ergodic Theory with a View Towards Number Theory, Springer, London, 2011 | MR | Zbl
[8] E. Glasner, Ergodic Theory via Joinings, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[9] A. N. Kolmogorov, “Three approaches to the definition of information”, Probl. Peredachi Inform., 1:1 (1965), 3–11 | MR | Zbl
[10] N. Moriakov, Computable Følner monotilings and a theorem of Brudno I, 2015, arXiv: 1509.07858
[11] N. Moriakov, Computable Følner monotilings and a theorem of Brudno II, 2015, arXiv: 1510.03833
[12] S. G. Simpson, “Symbolic dynamics: entropy=dimension=complexity”, Theory Comput. Syst., 56:3 (2015), 527–543 | DOI | MR | Zbl