Kernels of Toeplitz operators and rational interpolation
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 85-107
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The kernel of a Toeplitz operator on the Hardy class $H^2$ in the unit disk is a nearly invariant subspace of the backward shift operator, and, by D. Hitt's result, it has the form $g\cdot K_\omega$, where $\omega$ is an inner function, $K_\omega=H^2\ominus\omega H^2$, and $g$ is an isometric multiplier on $K_\omega$. We describe the functions $\omega$ and $g$ for the kernel of the Toeplitz operator with symbol $\bar\theta\Delta$, where $\theta$ is an inner function and $\Delta$ is a finite Blaschke product.
			
            
            
            
          
        
      @article{ZNSL_2018_467_a8,
     author = {V. V. Kapustin},
     title = {Kernels of {Toeplitz} operators and rational interpolation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {85--107},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a8/}
}
                      
                      
                    V. V. Kapustin. Kernels of Toeplitz operators and rational interpolation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 85-107. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a8/