Kernels of Toeplitz operators and rational interpolation
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 85-107

Voir la notice de l'article provenant de la source Math-Net.Ru

The kernel of a Toeplitz operator on the Hardy class $H^2$ in the unit disk is a nearly invariant subspace of the backward shift operator, and, by D. Hitt's result, it has the form $g\cdot K_\omega$, where $\omega$ is an inner function, $K_\omega=H^2\ominus\omega H^2$, and $g$ is an isometric multiplier on $K_\omega$. We describe the functions $\omega$ and $g$ for the kernel of the Toeplitz operator with symbol $\bar\theta\Delta$, where $\theta$ is an inner function and $\Delta$ is a finite Blaschke product.
@article{ZNSL_2018_467_a8,
     author = {V. V. Kapustin},
     title = {Kernels of {Toeplitz} operators and rational interpolation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {85--107},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a8/}
}
TY  - JOUR
AU  - V. V. Kapustin
TI  - Kernels of Toeplitz operators and rational interpolation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 85
EP  - 107
VL  - 467
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a8/
LA  - ru
ID  - ZNSL_2018_467_a8
ER  - 
%0 Journal Article
%A V. V. Kapustin
%T Kernels of Toeplitz operators and rational interpolation
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 85-107
%V 467
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a8/
%G ru
%F ZNSL_2018_467_a8
V. V. Kapustin. Kernels of Toeplitz operators and rational interpolation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 85-107. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a8/