Extended Ces\`aro operators between Hardy and Bergman spaces on the complex ball
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 67-72
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We characterize those holomorphic symbols $g$ for which the extended Cesàro operator $V_g$ maps the Hardy space $H^p(B)$ into the weighted Bergman space $A^q_\beta(B)$, $0$, $\beta>-1$, on the unit ball $B$ of $\mathbb C^d$.
			
            
            
            
          
        
      @article{ZNSL_2018_467_a6,
     author = {E. S. Dubtsov},
     title = {Extended {Ces\`aro} operators between {Hardy} and {Bergman} spaces on the complex ball},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--72},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a6/}
}
                      
                      
                    E. S. Dubtsov. Extended Ces\`aro operators between Hardy and Bergman spaces on the complex ball. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 67-72. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a6/