, $\beta>-1$, on the unit ball $B$ of $\mathbb C^d$.
@article{ZNSL_2018_467_a6,
author = {E. S. Dubtsov},
title = {Extended {Ces\`aro} operators between {Hardy} and {Bergman} spaces on the complex ball},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {67--72},
year = {2018},
volume = {467},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a6/}
}
E. S. Dubtsov. Extended Cesàro operators between Hardy and Bergman spaces on the complex ball. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 67-72. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a6/
[1] A. Aleman, J. A. Cima, “An integral operator on $H^p$ and Hardy's inequality”, J. Anal. Math., 85 (2001), 157–176 | DOI | MR | Zbl
[2] A. Aleman, A. G. Siskakis, “An integral operator on $H^p$”, Complex Variables Theory Appl., 28:2 (1995), 149–158 | DOI | MR | Zbl
[3] A. Aleman, A. G. Siskakis, “Integration operators on Bergman spaces”, Indiana Univ. Math. J., 46:2 (1997), 337–356 | DOI | MR | Zbl
[4] Z. Hu, “Extended Cesàro operators on mixed norm spaces”, Proc. Amer. Math. Soc., 131:7 (2003), 2171–2179 | DOI | MR | Zbl
[5] D. H. Luecking, “Embedding derivatives of Hardy spaces into Lebesgue spaces”, Proc. London Math. Soc. (3), 63:3 (1991), 595–619 | DOI | MR | Zbl
[6] J. Pau, “Integration operators between Hardy spaces on the unit ball of $\mathbb C^n$”, J. Funct. Anal., 270:1 (2016), 134–176 | DOI | MR | Zbl
[7] Ch. Pommerenke, “Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation”, Comment. Math. Helv., 52:4 (1977), 591–602 | DOI | MR | Zbl
[8] Z. Wu, “Volterra operator, area integral and Carleson measures”, Sci. China Math., 54:11 (2011), 2487–2500 | DOI | MR | Zbl
[9] J. Xiao, “Riemann–Stieltjes operators between weighted Bergman spaces”, Complex and harmonic analysis, DEStech Publ., Inc., Lancaster, PA, 2007, 205–212 | MR | Zbl
[10] K. Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics, 226, Springer-Verlag, New York, 2005 | MR | Zbl