Extended Ces\`aro operators between Hardy and Bergman spaces on the complex ball
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 67-72

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize those holomorphic symbols $g$ for which the extended Cesàro operator $V_g$ maps the Hardy space $H^p(B)$ into the weighted Bergman space $A^q_\beta(B)$, $0$, $\beta>-1$, on the unit ball $B$ of $\mathbb C^d$.
@article{ZNSL_2018_467_a6,
     author = {E. S. Dubtsov},
     title = {Extended {Ces\`aro} operators between {Hardy} and {Bergman} spaces on the complex ball},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--72},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a6/}
}
TY  - JOUR
AU  - E. S. Dubtsov
TI  - Extended Ces\`aro operators between Hardy and Bergman spaces on the complex ball
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 67
EP  - 72
VL  - 467
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a6/
LA  - ru
ID  - ZNSL_2018_467_a6
ER  - 
%0 Journal Article
%A E. S. Dubtsov
%T Extended Ces\`aro operators between Hardy and Bergman spaces on the complex ball
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 67-72
%V 467
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a6/
%G ru
%F ZNSL_2018_467_a6
E. S. Dubtsov. Extended Ces\`aro operators between Hardy and Bergman spaces on the complex ball. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 67-72. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a6/