On the spectra of hyperbolic surfaces without thin handles
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 60-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We obtain a sharp lower estimate on eigenvalues of Laplace–Beltrami operator on a hyperbolic surface with injectivity radius bounded from the below.
@article{ZNSL_2018_467_a5,
     author = {M. B. Dubashinskiy},
     title = {On the spectra of hyperbolic surfaces without thin handles},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {60--66},
     year = {2018},
     volume = {467},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a5/}
}
TY  - JOUR
AU  - M. B. Dubashinskiy
TI  - On the spectra of hyperbolic surfaces without thin handles
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 60
EP  - 66
VL  - 467
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a5/
LA  - ru
ID  - ZNSL_2018_467_a5
ER  - 
%0 Journal Article
%A M. B. Dubashinskiy
%T On the spectra of hyperbolic surfaces without thin handles
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 60-66
%V 467
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a5/
%G ru
%F ZNSL_2018_467_a5
M. B. Dubashinskiy. On the spectra of hyperbolic surfaces without thin handles. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 60-66. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a5/

[1] P. Buser, Geometry and Spectra of Compact Riemann Surfaces Birkhäuser, 2010, reprint izdaniya 1992 g. | MR

[2] P. Buser, “Cubic graphs and the first eigenvalue of a Riemann surface”, Math. Z., 162 (1978), 87–99 | DOI | MR | Zbl

[3] J.-P. Otal, E. Rosas, “Pour toute surface hyperbolique de genre $g$, $\lambda_{2g-2}>1/4$”, Duke Math. J., 150:1 (2009), 101–115 | DOI | MR | Zbl

[4] J. Cheeger, “A lower bound for the smallest eigenvalue of the Laplacian”, Problems in analysis, A symposium in honor of S. Bochner, Princeton Univ. Press, Princeton, NJ, 1970, 195–199 | MR | Zbl

[5] S.-T. Yau, “Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold”, Ann. Sci. Ecole Norm. Sup., 8:4 (1975), 487–507 | DOI | MR | Zbl