Local boundary smoothness of an analytic function and its modulus in several dimensions: an announcement
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 30-33
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The drop of the smoothness of an analytic function compared to the smoothness of its modulus is discussed for the unit ball of $\mathbb C^n$. The paper is devoted to local aspects of the problem.
			
            
            
            
          
        
      @article{ZNSL_2018_467_a2,
     author = {I. Vasilyev},
     title = {Local boundary smoothness of an analytic function and its modulus in several dimensions: an announcement},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {30--33},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a2/}
}
                      
                      
                    TY - JOUR AU - I. Vasilyev TI - Local boundary smoothness of an analytic function and its modulus in several dimensions: an announcement JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 30 EP - 33 VL - 467 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a2/ LA - en ID - ZNSL_2018_467_a2 ER -
I. Vasilyev. Local boundary smoothness of an analytic function and its modulus in several dimensions: an announcement. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 30-33. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a2/