@article{ZNSL_2018_467_a2,
author = {I. Vasilyev},
title = {Local boundary smoothness of an analytic function and its modulus in several dimensions: an announcement},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {30--33},
year = {2018},
volume = {467},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a2/}
}
I. Vasilyev. Local boundary smoothness of an analytic function and its modulus in several dimensions: an announcement. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 30-33. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a2/
[1] E. Abakumov, O. El-Fallah, K. Kellay, T. Ransford, “Cyclicity in the harmonic Dirichlet space”, Harmonic Analysis, Function Theory, Operator Theory, and Their Applications, Theta Ser. Adv. Math., Theta, Bucharest, 2017, 1–10 | MR
[2] J. E. Brennan, “Approximation in the mean by polynomials on non-Carathéodory domains”, Ark. Mat., 15:1–2 (1977), 117–168 | DOI | MR | Zbl
[3] J. Mashreghi, M. Shabankhah, “Zero sets and uniqueness sets with one cluster point for the Dirichlet space”, J. Math. Analys. Applic., 357:2 (2009), 498–503 | DOI | MR | Zbl
[4] B. A. Taylor, D. L. Williams, “Zeros of Lipschitz functions analytic in the unit disc”, Michigan Math. J., 18:2 (1971), 129–139 | DOI | MR | Zbl
[5] J. Bruna, J. Ortega, “Closed finitely generated ideals in algebras of holomorphic functions and smooth to the boundary in strictly pseudoconvex domains”, Math. Annalen, 268 (1984), 137–158 | DOI | MR
[6] A. V. Vasin, S. V. Kislyakov, A. N. Medvedev, “Local smoothness of an analytic function compared to the smoothness of its modules”, Algebra Analiz, 25:3 (2013), 52–85 | MR | Zbl
[7] V. P. Havin, F. A. Shamoyan, “Analytic functions with the boundary values having Lipschitz module”, Zap. Nauchn. Semin. LOMI, 19, 1970, 237–239 | MR | Zbl
[8] N. A. Shirokov, “Smoothness of a holomorphic function in a ball and smoothness of its modulus on the sphere”, Zap. Nauchn. Semin. POMI, 447, 2016, 123–128 | MR
[9] N. A. Shirokov, Analytic functions smooth up to the boundary, Springer Verlag, 1988 | MR | Zbl
[10] W. Rudin, Function theory in the unit ball of $\mathbb C^n$, Springer-Verlag, New York, 1980 | MR
[11] R. A. DeVore, R. C. Sharpley, Maximal functions measuring smoothness, Mem. Amer. Math. Soc., 47, no. 293, 1984 | MR