Local boundary smoothness of an analytic function and its modulus in several dimensions: an announcement
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 30-33

Voir la notice de l'article provenant de la source Math-Net.Ru

The drop of the smoothness of an analytic function compared to the smoothness of its modulus is discussed for the unit ball of $\mathbb C^n$. The paper is devoted to local aspects of the problem.
@article{ZNSL_2018_467_a2,
     author = {I. Vasilyev},
     title = {Local boundary smoothness of an analytic function and its modulus in several dimensions: an announcement},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {30--33},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a2/}
}
TY  - JOUR
AU  - I. Vasilyev
TI  - Local boundary smoothness of an analytic function and its modulus in several dimensions: an announcement
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 30
EP  - 33
VL  - 467
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a2/
LA  - en
ID  - ZNSL_2018_467_a2
ER  - 
%0 Journal Article
%A I. Vasilyev
%T Local boundary smoothness of an analytic function and its modulus in several dimensions: an announcement
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 30-33
%V 467
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a2/
%G en
%F ZNSL_2018_467_a2
I. Vasilyev. Local boundary smoothness of an analytic function and its modulus in several dimensions: an announcement. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 30-33. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a2/