About sharpness of the estimate in a theorem concerning half smoothness of a function holomorphic in a ball
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 244-254
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mathbb B^n$ be the unit ball and $S^n$ the unit sphere in $\mathbb C^n$, $n\geq2$. Take $\alpha$, $0<\alpha<1$, and define a function $f$ on $\overline{\mathbb B^n}$ as follows: $$ f(z)= (z_1-1)^\alpha e^{\frac{z_1+1}{z_1-1}},\quad z=(z_1,\dots,z_n)\in\overline{\mathbb B^n}. $$ The main result of the paper is the following. Theorem. {\it If considered on the unit sphere $S^n$, the function $\zeta\mapsto|f(\zeta)|$ belongs to the Hölder class $H^\alpha(S^n)$; the function $f$ does not belong to the Hölder class $H^{\frac\alpha2+\varepsilon}(\overline{\mathbb B^n})$ for any $\varepsilon>0$.}
@article{ZNSL_2018_467_a19,
author = {N. A. Shirokov},
title = {About sharpness of the estimate in a~theorem concerning half smoothness of a~function holomorphic in a~ball},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {244--254},
year = {2018},
volume = {467},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a19/}
}
TY - JOUR AU - N. A. Shirokov TI - About sharpness of the estimate in a theorem concerning half smoothness of a function holomorphic in a ball JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 244 EP - 254 VL - 467 UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a19/ LA - ru ID - ZNSL_2018_467_a19 ER -
N. A. Shirokov. About sharpness of the estimate in a theorem concerning half smoothness of a function holomorphic in a ball. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 244-254. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a19/
[1] N. A. Shirokov, “Gladkost golomorfnoi v share funktsii i ee modulya na sfere”, Zap. nauchn. semin. POMI, 447, 2016, 123–128 | MR