About sharpness of the estimate in a~theorem concerning half smoothness of a~function holomorphic in a~ball
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 244-254

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb B^n$ be the unit ball and $S^n$ the unit sphere in $\mathbb C^n$, $n\geq2$. Take $\alpha$, $0\alpha1$, and define a function $f$ on $\overline{\mathbb B^n}$ as follows: $$ f(z)= (z_1-1)^\alpha e^{\frac{z_1+1}{z_1-1}},\quad z=(z_1,\dots,z_n)\in\overline{\mathbb B^n}. $$ The main result of the paper is the following. Theorem. {\it If considered on the unit sphere $S^n$, the function $\zeta\mapsto|f(\zeta)|$ belongs to the Hölder class $H^\alpha(S^n)$; the function $f$ does not belong to the Hölder class $H^{\frac\alpha2+\varepsilon}(\overline{\mathbb B^n})$ for any $\varepsilon>0$.}
@article{ZNSL_2018_467_a19,
     author = {N. A. Shirokov},
     title = {About sharpness of the estimate in a~theorem concerning half smoothness of a~function holomorphic in a~ball},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {244--254},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a19/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - About sharpness of the estimate in a~theorem concerning half smoothness of a~function holomorphic in a~ball
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 244
EP  - 254
VL  - 467
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a19/
LA  - ru
ID  - ZNSL_2018_467_a19
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T About sharpness of the estimate in a~theorem concerning half smoothness of a~function holomorphic in a~ball
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 244-254
%V 467
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a19/
%G ru
%F ZNSL_2018_467_a19
N. A. Shirokov. About sharpness of the estimate in a~theorem concerning half smoothness of a~function holomorphic in a~ball. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 244-254. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a19/