A note about approximation by trigonometric polynomials
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 238-243

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E=\bigcup^n_{k=1}[a_k,b_k]\subset\mathbb R$; if $n>1$ then we assume that the segments $[a_k,b_k]$ are pairwise disjoint. Suppose that the following property holds: \begin{equation} E\cap(E+2\pi\nu)=\varnothing,\qquad\nu\in\mathbb Z,\quad\nu\ne0. \end{equation} We denote by $H^{\omega+r}(E)$ the space of functions $f$ defined on $E$ such that $|f^{(r)}(x_2)-f^{(r)}(x_1)|\leq c_f\omega (|x_2-x_1|)$, $x_1,x_2\in E$, $f^{(0)}\equiv f$. We assume that a modulus of continuity $\omega$ satisfies the condition \begin{equation} \int^x_0\frac{\omega(t)}t\,dt+x\int^\infty_x\frac{\omega(t)}{t^2}\,dt\leq c\omega(x). \end{equation} We find a constructive description of the space $H^{\omega+r}(E)$ in terms of the rate of nonuniform approximation of $f\in H^{\omega+r}(E)$ by means of trigonometric polynomials if $E$ satisfies (1) and $\omega$ satisfies (2).
@article{ZNSL_2018_467_a18,
     author = {N. A. Shirokov},
     title = {A note about approximation by trigonometric polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {238--243},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a18/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - A note about approximation by trigonometric polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 238
EP  - 243
VL  - 467
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a18/
LA  - ru
ID  - ZNSL_2018_467_a18
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T A note about approximation by trigonometric polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 238-243
%V 467
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a18/
%G ru
%F ZNSL_2018_467_a18
N. A. Shirokov. A note about approximation by trigonometric polynomials. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 238-243. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a18/