A note about approximation by trigonometric polynomials
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 238-243
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $E=\bigcup^n_{k=1}[a_k,b_k]\subset\mathbb R$; if $n>1$ then we assume that the segments $[a_k,b_k]$ are pairwise disjoint. Suppose that the following property holds: \begin{equation} E\cap(E+2\pi\nu)=\varnothing,\qquad\nu\in\mathbb Z,\quad\nu\ne0. \end{equation} We denote by $H^{\omega+r}(E)$ the space of functions $f$ defined on $E$ such that $|f^{(r)}(x_2)-f^{(r)}(x_1)|\leq c_f\omega (|x_2-x_1|)$, $x_1,x_2\in E$, $f^{(0)}\equiv f$. We assume that a modulus of continuity $\omega$ satisfies the condition \begin{equation} \int^x_0\frac{\omega(t)}t\,dt+x\int^\infty_x\frac{\omega(t)}{t^2}\,dt\leq c\omega(x). \end{equation} We find a constructive description of the space $H^{\omega+r}(E)$ in terms of the rate of nonuniform approximation of $f\in H^{\omega+r}(E)$ by means of trigonometric polynomials if $E$ satisfies (1) and $\omega$ satisfies (2).
@article{ZNSL_2018_467_a18,
author = {N. A. Shirokov},
title = {A note about approximation by trigonometric polynomials},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {238--243},
year = {2018},
volume = {467},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a18/}
}
N. A. Shirokov. A note about approximation by trigonometric polynomials. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 238-243. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a18/
[1] O. V. Silvanovich, N. A. Shirokov, “Priblizhenie tselymi funktsiyami na schetnom mnozhestve otrezkov veschestvennoi osi. 3. Dalneishee obobschenie”, Vestnik SPbGU, seriya 1, 5:2 (2018), 270–277 | MR
[2] B. Ya. Levin, “Mazhoranty v klassakh subgarmonicheskikh funktsii”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 52 (1989), 3–33
[3] O. V. Silvanovich, N. A. Shirokov, “Priblizhenie tselymi funktsiyami na schetnom mnozhestve otrezkov veschestvennoi osi. 4. Obratnaya teorema”, Vestnik SPbGU, seriya 1, 5:3 (2018), 441–451