Interpolation in a Bernstein space by means of approximation
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 215-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We denote by $B_\sigma$ the Bernstein space of entire functions of exponential type $\leq\sigma$ bounded on the real axis. Let $\Lambda=\{z_n\}_{n\in\mathbb Z}$, $z_n=x_n+iy_n$, be a sequence such that $x_{n+1}-x_n\geq l>0$ and $|y_n|\leq L$, $n\in\mathbb Z$. We prove that for any sequence $A=\{a_n\}_{n\in~\mathbb Z}$ of bounded $a_n$, $|a_n|\leq M$, $n\in\mathbb Z$, there exists a function $f\in B_\sigma$ with $\sigma\leq\sigma_0(l,L)$ such that $f|_\Lambda=A$. We use a method of approximation by mean of functions from a Bernstein space.
@article{ZNSL_2018_467_a17,
     author = {N. A. Shirokov},
     title = {Interpolation in {a~Bernstein} space by means of approximation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {215--237},
     year = {2018},
     volume = {467},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a17/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - Interpolation in a Bernstein space by means of approximation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 215
EP  - 237
VL  - 467
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a17/
LA  - ru
ID  - ZNSL_2018_467_a17
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T Interpolation in a Bernstein space by means of approximation
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 215-237
%V 467
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a17/
%G ru
%F ZNSL_2018_467_a17
N. A. Shirokov. Interpolation in a Bernstein space by means of approximation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 215-237. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a17/

[1] A. Beurling, The Collected Works of Arne Beurling, v. 2, Birkhauser, Boston, 1989, 351–365 | MR

[2] J. Ortega-Cerdà, K. Seip, “Multipliers for entire functions and an interpolation problem of Beurling”, J. Functional Analysis, 162 (1999), 400–415 | DOI | MR | Zbl

[3] O. V. Silvanovich, N. A. Shirokov, “Priblizhenie tselymi funktsiyami na schetnom ob'edinenii otrezkov veschestvennoi osi. 1. Formulirovka rezultatov”, Vestnik SPbGU, ser. 1, 3:4 (2016), 644–650 | MR

[4] O. V. Silvanovich, N. A. Shirokov, “Priblizhenie tselymi funktsiyami na schetnom ob'edinenii otrezkov veschestvennoi osi. 2. Dokazatelstvo osnovnoi teoremy”, Vestnik SPbGU, ser. 1, 4:1 (2017), 53–63 | MR

[5] V. I. Belyi, “Konformnye otobrazheniya i priblizhenie funktsii v oblastyakh s kvazikonformnoi granitsei”, Matem. Sbornik, 102(144):3 (1977), 331–361 | MR | Zbl

[6] B. Ya. Levin, “Mazhoranty v klassakh subgarmonicheskikh funktsii. II”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 52 (1989), 3–33