Interpolation in a~Bernstein space by means of approximation
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 215-237
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We denote by $B_\sigma$ the Bernstein space of entire functions of exponential type $\leq\sigma$ bounded on the real axis. Let $\Lambda=\{z_n\}_{n\in\mathbb Z}$, $z_n=x_n+iy_n$, be a sequence such that $x_{n+1}-x_n\geq l>0$ and $|y_n|\leq L$, $n\in\mathbb Z$. We prove that for any sequence $A=\{a_n\}_{n\in~\mathbb Z}$ of bounded $a_n$, $|a_n|\leq M$, $n\in\mathbb Z$, there exists a function $f\in B_\sigma$ with $\sigma\leq\sigma_0(l,L)$ such that $f|_\Lambda=A$. We use a method of approximation by mean of functions from a Bernstein space.
			
            
            
            
          
        
      @article{ZNSL_2018_467_a17,
     author = {N. A. Shirokov},
     title = {Interpolation in {a~Bernstein} space by means of approximation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {215--237},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a17/}
}
                      
                      
                    N. A. Shirokov. Interpolation in a~Bernstein space by means of approximation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 215-237. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a17/