Interpolation in a~Bernstein space by means of approximation
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 215-237

Voir la notice de l'article provenant de la source Math-Net.Ru

We denote by $B_\sigma$ the Bernstein space of entire functions of exponential type $\leq\sigma$ bounded on the real axis. Let $\Lambda=\{z_n\}_{n\in\mathbb Z}$, $z_n=x_n+iy_n$, be a sequence such that $x_{n+1}-x_n\geq l>0$ and $|y_n|\leq L$, $n\in\mathbb Z$. We prove that for any sequence $A=\{a_n\}_{n\in~\mathbb Z}$ of bounded $a_n$, $|a_n|\leq M$, $n\in\mathbb Z$, there exists a function $f\in B_\sigma$ with $\sigma\leq\sigma_0(l,L)$ such that $f|_\Lambda=A$. We use a method of approximation by mean of functions from a Bernstein space.
@article{ZNSL_2018_467_a17,
     author = {N. A. Shirokov},
     title = {Interpolation in {a~Bernstein} space by means of approximation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {215--237},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a17/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - Interpolation in a~Bernstein space by means of approximation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 215
EP  - 237
VL  - 467
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a17/
LA  - ru
ID  - ZNSL_2018_467_a17
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T Interpolation in a~Bernstein space by means of approximation
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 215-237
%V 467
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a17/
%G ru
%F ZNSL_2018_467_a17
N. A. Shirokov. Interpolation in a~Bernstein space by means of approximation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 215-237. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a17/