Duality in a~stability problem for some functionals arising in interpolation theory
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 207-214

Voir la notice de l'article provenant de la source Math-Net.Ru

By using duality, it is shown that there exist near-minimizers for the distance functionals for the couple $(L^\infty,L^p)$, $1$, that are stable under the action of singular integral operators.
@article{ZNSL_2018_467_a16,
     author = {A. S. Tselishchev},
     title = {Duality in a~stability problem for some functionals arising in interpolation theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {207--214},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a16/}
}
TY  - JOUR
AU  - A. S. Tselishchev
TI  - Duality in a~stability problem for some functionals arising in interpolation theory
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 207
EP  - 214
VL  - 467
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a16/
LA  - ru
ID  - ZNSL_2018_467_a16
ER  - 
%0 Journal Article
%A A. S. Tselishchev
%T Duality in a~stability problem for some functionals arising in interpolation theory
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 207-214
%V 467
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a16/
%G ru
%F ZNSL_2018_467_a16
A. S. Tselishchev. Duality in a~stability problem for some functionals arising in interpolation theory. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 207-214. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a16/