Duality in a stability problem for some functionals arising in interpolation theory
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 207-214 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

By using duality, it is shown that there exist near-minimizers for the distance functionals for the couple $(L^\infty,L^p)$, $1, that are stable under the action of singular integral operators.
@article{ZNSL_2018_467_a16,
     author = {A. S. Tselishchev},
     title = {Duality in a~stability problem for some functionals arising in interpolation theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {207--214},
     year = {2018},
     volume = {467},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a16/}
}
TY  - JOUR
AU  - A. S. Tselishchev
TI  - Duality in a stability problem for some functionals arising in interpolation theory
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 207
EP  - 214
VL  - 467
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a16/
LA  - ru
ID  - ZNSL_2018_467_a16
ER  - 
%0 Journal Article
%A A. S. Tselishchev
%T Duality in a stability problem for some functionals arising in interpolation theory
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 207-214
%V 467
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a16/
%G ru
%F ZNSL_2018_467_a16
A. S. Tselishchev. Duality in a stability problem for some functionals arising in interpolation theory. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 207-214. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a16/

[1] J. Bourgain, “Some consequences of Pisier's approach to interpolation”, Isr. Math. J., 77 (1992), 165–185 | DOI | MR | Zbl

[2] S. V. Kisliakov, “Interpolation of $H^p$-spaces: some recent developments”, Israel Math. Conf. Proc., 13 (1999), 102–140 | MR | Zbl

[3] S. Kislyakov, N. Kruglyak, Extremal Problems in Interpolation Theory, Whitney–Besicovitch Coverings, and Singular Integrals, Birkhäuser, 2013 | MR | Zbl

[4] S. V. Kislyakov, Kuankhua Shu, “Veschestvennaya interpolyatsiya i singulyarnye integraly”, Algebra i analiz, 8:4 (1996), 75–109 | MR | Zbl

[5] G. Pisier, “Interpolation between $H^p$ spaces and non-commutative generalizations. I”, Pacific J. Math., 155:2 (1992), 341–368 | DOI | MR | Zbl

[6] A. S. Tselischev, “Ustoichivost pochti optimalnykh razlozhenii v analize Fure”, Zap. nauchn.semin. POMI, 467, 2018, 191–206