Duality in a~stability problem for some functionals arising in interpolation theory
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 207-214
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			By using duality, it is shown that there exist near-minimizers  for the distance functionals for the couple $(L^\infty,L^p)$, $1$, that are stable under the action of singular integral operators.
			
            
            
            
          
        
      @article{ZNSL_2018_467_a16,
     author = {A. S. Tselishchev},
     title = {Duality in a~stability problem for some functionals arising in interpolation theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {207--214},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a16/}
}
                      
                      
                    TY - JOUR AU - A. S. Tselishchev TI - Duality in a~stability problem for some functionals arising in interpolation theory JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 207 EP - 214 VL - 467 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a16/ LA - ru ID - ZNSL_2018_467_a16 ER -
A. S. Tselishchev. Duality in a~stability problem for some functionals arising in interpolation theory. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 207-214. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a16/