@article{ZNSL_2018_467_a15,
author = {A. S. Tselishchev},
title = {Stability of nearly optimal decompositions in {Fourier} analysis},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {191--206},
year = {2018},
volume = {467},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a15/}
}
A. S. Tselishchev. Stability of nearly optimal decompositions in Fourier analysis. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 191-206. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a15/
[1] D. S. Anisimov, S. V. Kislyakov, “Dvoinye singulyarnye integraly: interpolyatsiya i ispravlenie”, Algebra i analiz, 16:5 (2004), 1–33 | MR | Zbl
[2] J. Bourgain, “Some consequences of Pisier's approach to interpolation”, Isr. Math. J., 77 (1992), 165–185 | DOI | MR | Zbl
[3] J. Garcia-Cuerva, J. L. Rubio De Francia, Weighted norm inequalities and related topics, North-Holland Math. Stud., 116, Notas. Math., 104, North-Holland, Amsterdam, 1985 | MR | Zbl
[4] L. Grafakos, Classical Fourier Analysis, 3rd edition, Springer, 2014 | MR | Zbl
[5] S. Kislyakov, N. Kruglyak, Extremal Problems in Interpolation Theory, Whitney–Besicovitch Coverings, and Singular Integrals, Birkhauser, 2013 | MR | Zbl
[6] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, 2005
[7] P. Wojtaszczyk, “Wavelets as unconditional bases in $L_p(\mathbb R)$”, J. Fourier Anal. Appl., 5:1 (1999), 73–85 | DOI | MR | Zbl