Stability of nearly optimal decompositions in Fourier analysis
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 191-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The question of existence is treated for near-minimizers for the distance functional (or $E$-functional in the interpolation terminology) that are stable under the action of certain operators. In particular, stable near-minimizers for the couple $(L^1,L^p)$ are shown to exist when the operator is the projection on wavelets and these wavelets possess only some weak conditions of decay at infinity.
@article{ZNSL_2018_467_a15,
     author = {A. S. Tselishchev},
     title = {Stability of nearly optimal decompositions in {Fourier} analysis},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {191--206},
     year = {2018},
     volume = {467},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a15/}
}
TY  - JOUR
AU  - A. S. Tselishchev
TI  - Stability of nearly optimal decompositions in Fourier analysis
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 191
EP  - 206
VL  - 467
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a15/
LA  - ru
ID  - ZNSL_2018_467_a15
ER  - 
%0 Journal Article
%A A. S. Tselishchev
%T Stability of nearly optimal decompositions in Fourier analysis
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 191-206
%V 467
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a15/
%G ru
%F ZNSL_2018_467_a15
A. S. Tselishchev. Stability of nearly optimal decompositions in Fourier analysis. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 191-206. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a15/

[1] D. S. Anisimov, S. V. Kislyakov, “Dvoinye singulyarnye integraly: interpolyatsiya i ispravlenie”, Algebra i analiz, 16:5 (2004), 1–33 | MR | Zbl

[2] J. Bourgain, “Some consequences of Pisier's approach to interpolation”, Isr. Math. J., 77 (1992), 165–185 | DOI | MR | Zbl

[3] J. Garcia-Cuerva, J. L. Rubio De Francia, Weighted norm inequalities and related topics, North-Holland Math. Stud., 116, Notas. Math., 104, North-Holland, Amsterdam, 1985 | MR | Zbl

[4] L. Grafakos, Classical Fourier Analysis, 3rd edition, Springer, 2014 | MR | Zbl

[5] S. Kislyakov, N. Kruglyak, Extremal Problems in Interpolation Theory, Whitney–Besicovitch Coverings, and Singular Integrals, Birkhauser, 2013 | MR | Zbl

[6] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, 2005

[7] P. Wojtaszczyk, “Wavelets as unconditional bases in $L_p(\mathbb R)$”, J. Fourier Anal. Appl., 5:1 (1999), 73–85 | DOI | MR | Zbl