Stability of nearly optimal decompositions in Fourier analysis
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 191-206

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of existence is treated for near-minimizers for the distance functional (or $E$-functional in the interpolation terminology) that are stable under the action of certain operators. In particular, stable near-minimizers for the couple $(L^1,L^p)$ are shown to exist when the operator is the projection on wavelets and these wavelets possess only some weak conditions of decay at infinity.
@article{ZNSL_2018_467_a15,
     author = {A. S. Tselishchev},
     title = {Stability of nearly optimal decompositions in {Fourier} analysis},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {191--206},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a15/}
}
TY  - JOUR
AU  - A. S. Tselishchev
TI  - Stability of nearly optimal decompositions in Fourier analysis
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 191
EP  - 206
VL  - 467
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a15/
LA  - ru
ID  - ZNSL_2018_467_a15
ER  - 
%0 Journal Article
%A A. S. Tselishchev
%T Stability of nearly optimal decompositions in Fourier analysis
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 191-206
%V 467
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a15/
%G ru
%F ZNSL_2018_467_a15
A. S. Tselishchev. Stability of nearly optimal decompositions in Fourier analysis. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 191-206. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a15/