On the boundary behavior of some classes of mappings
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 169-190

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary behavior of closed open discrete mappings of Sobolev and Orlicz–Sobolev classes in $\mathbb R^n$, $n\ge3$, is studied. It is proved that a mapping $f$ mentioned above has a continuous extension to a boundary point $x_0\in\partial D$ of a domain $D\subset\mathbb R^n$ whenever its inner dilatation of order $\alpha>n-1$ has a majorant of finite mean oscillation class at the point in question. Another sufficient condition for continuous extension of mappings is the divergence of some integral. Some results on continuous extension of these mappings to an isolated boundary point are also proved.
@article{ZNSL_2018_467_a14,
     author = {E. A. Sevost'yanov},
     title = {On the boundary behavior of some classes of mappings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {169--190},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a14/}
}
TY  - JOUR
AU  - E. A. Sevost'yanov
TI  - On the boundary behavior of some classes of mappings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 169
EP  - 190
VL  - 467
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a14/
LA  - ru
ID  - ZNSL_2018_467_a14
ER  - 
%0 Journal Article
%A E. A. Sevost'yanov
%T On the boundary behavior of some classes of mappings
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 169-190
%V 467
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a14/
%G ru
%F ZNSL_2018_467_a14
E. A. Sevost'yanov. On the boundary behavior of some classes of mappings. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 169-190. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a14/