The Stieltjes integrals in the theory of harmonic functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 151-168

Voir la notice de l'article provenant de la source Math-Net.Ru

We study various Stieltjes integrals, such as Poisson–Stieltjes, conjugate Poisson–Stieltjes, Schwartz–Stieltjes and Cauchy–Stieltjes, and prove theorems on the existence of their finite angular limits a.e. in terms of the Hilbert–Stieltjes integral. These results are valid for arbitrary bounded integrands that are differentiable a.e. and, in particular, for integrands of the class $\mathcal{CBV}$ (countably bounded variation).
@article{ZNSL_2018_467_a13,
     author = {V. Ryazanov},
     title = {The {Stieltjes} integrals in the theory of harmonic functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {151--168},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a13/}
}
TY  - JOUR
AU  - V. Ryazanov
TI  - The Stieltjes integrals in the theory of harmonic functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 151
EP  - 168
VL  - 467
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a13/
LA  - en
ID  - ZNSL_2018_467_a13
ER  - 
%0 Journal Article
%A V. Ryazanov
%T The Stieltjes integrals in the theory of harmonic functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 151-168
%V 467
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a13/
%G en
%F ZNSL_2018_467_a13
V. Ryazanov. The Stieltjes integrals in the theory of harmonic functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 151-168. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a13/