Hausdorff measure on $n$-dimensional manifolds in~$\mathbb R^m$ and $n$-dimensional variations
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 143-150
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			If $f\colon[a;b]\to\mathbb R^m$ is an injective continuous mapping and $f_1,\dots,f_m$ are coordinate functions of $f$, then the curve $f([a;b])$ is rectifiable if and only if the variations of all $f_k$ are finite. By Jordan's theorem for the length of the curve we have
$$
V_{f_i}([a;b])\le l(f([a;b]))\le\sum_{k=1}^mV_{f_k}([a;b]),\quad i=1,\dots,m.
$$
The length $l(f([a;b]))$ is $H_1(f([a;b]))$, where $H_1$ is one-dimensional Hausdorff measure in $\mathbb R^m$. 
In this article, the notion of the variation $V_f[a;b]$ of a function 
$$
f\colon[a;b]\to\mathbb R
$$
is generalized to the variation $V_f(A)$ of a continuous mapping $f\colon G\to\mathbb R^n$, where $G$ is an open subset of $\mathbb R^n$, on a set $A\subset G$, $A=\bigcup_{i\in I}K_i$, where $I$ is countable, all $K_i$ are compact.
Suppose  $f\colon G\to\mathbb R^m$, $G\subset\mathbb R^n$, $n\le m$, $f_1,\dots,f_m$ are the coordinate functions of $f$. If $1\le i_1$, $\alpha=\{i_1,\dots,i_n\}$, then $f_\alpha$ is the mapping with the coordinate functions $f_{i_1},\dots,f_{i_n}$:
$$
f_\alpha\colon
\begin{cases}
x_{i_1}=f_{i_1}(t_1,\dots,t_n)\\
\dots\dots\dots\dots\dots\dots\\
x_{i_n}=f_{i_n}(t_1,\dots,t_n)
\end{cases}
\quad(t_1,\dots,t_n)\in G.
$$
The main result states that if $f$ is a continuous injective mapping, $f\colon G\to\mathbb R^m$, $n\le m$, $G$ is an open subset of $\mathbb R^n$, $A\subset G$, $A=\bigcup_{i\in I}K_i$, $I$ is countable, all $K_i$ are compact, then 
$$
V_{f_\alpha}(A)\le H_n(f(A)),
$$
where $V_{f_\alpha}(A)$ is the variation of $f_\alpha$ on $A$, $H_n$ is $n$-dimensional Hausdorff measure in $\mathbb R^m$.
			
            
            
            
          
        
      @article{ZNSL_2018_467_a12,
     author = {A. V. Potepun},
     title = {Hausdorff measure on $n$-dimensional manifolds in~$\mathbb R^m$ and $n$-dimensional variations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {143--150},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a12/}
}
                      
                      
                    TY - JOUR AU - A. V. Potepun TI - Hausdorff measure on $n$-dimensional manifolds in~$\mathbb R^m$ and $n$-dimensional variations JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 143 EP - 150 VL - 467 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a12/ LA - ru ID - ZNSL_2018_467_a12 ER -
A. V. Potepun. Hausdorff measure on $n$-dimensional manifolds in~$\mathbb R^m$ and $n$-dimensional variations. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 143-150. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a12/