Bellman function for a~parametric family of extremal problems in~$\mathrm{BMO}$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 128-142

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $I$ is an interval on the real line and $\langle\cdot\rangle_I$ is the corresponding integral average. We describe how the Bellman function for the functional $F(\varphi)=\langle f\circ\varphi\rangle_I$, $\varphi\in\mathrm{BMO}(I)$, varies when $f$ runs over a certain parametric family of functions. Thereby, we once again demonstrate the work of the methods developed recently by V. I. Vasyunin, P. B. Zatitskiy, P. Ivanishvili, D. M. Stolyarov, and the author.
@article{ZNSL_2018_467_a11,
     author = {N. N. Osipov},
     title = {Bellman function for a~parametric family of extremal problems in~$\mathrm{BMO}$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {128--142},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a11/}
}
TY  - JOUR
AU  - N. N. Osipov
TI  - Bellman function for a~parametric family of extremal problems in~$\mathrm{BMO}$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 128
EP  - 142
VL  - 467
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a11/
LA  - ru
ID  - ZNSL_2018_467_a11
ER  - 
%0 Journal Article
%A N. N. Osipov
%T Bellman function for a~parametric family of extremal problems in~$\mathrm{BMO}$
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 128-142
%V 467
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a11/
%G ru
%F ZNSL_2018_467_a11
N. N. Osipov. Bellman function for a~parametric family of extremal problems in~$\mathrm{BMO}$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 128-142. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a11/