Bellman function for a~parametric family of extremal problems in~$\mathrm{BMO}$
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 128-142
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Suppose $I$ is an interval on the real line and $\langle\cdot\rangle_I$ is the corresponding integral average. We describe how the Bellman function for the functional $F(\varphi)=\langle f\circ\varphi\rangle_I$, $\varphi\in\mathrm{BMO}(I)$, varies when $f$ runs over a certain parametric family of functions. Thereby, we once again demonstrate the work of the methods developed recently by V. I. Vasyunin, P. B. Zatitskiy, P. Ivanishvili, D. M. Stolyarov, and the author.
			
            
            
            
          
        
      @article{ZNSL_2018_467_a11,
     author = {N. N. Osipov},
     title = {Bellman function for a~parametric family of extremal problems in~$\mathrm{BMO}$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {128--142},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a11/}
}
                      
                      
                    N. N. Osipov. Bellman function for a~parametric family of extremal problems in~$\mathrm{BMO}$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 128-142. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a11/