Resolvents of selfadjoint extensions of the Laplace operator on the solenoidal subspace
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 21-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

On the space of solenoidal vector-valued functions vanishing at the origin with their derivatives, the Laplace operator is symmetric and has defect indices $(3,3)$. With the help of the Krein formula, an expression for the kernel of the resolvent for selfadjoint extensions of this operator is found as the sum of the Green function for the Laplace operator on the space of all vector-valued functions and a certain finite rank addendum.
@article{ZNSL_2018_467_a1,
     author = {T. A. Bolokhov},
     title = {Resolvents of selfadjoint extensions of the {Laplace} operator on the solenoidal subspace},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {21--29},
     year = {2018},
     volume = {467},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a1/}
}
TY  - JOUR
AU  - T. A. Bolokhov
TI  - Resolvents of selfadjoint extensions of the Laplace operator on the solenoidal subspace
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 21
EP  - 29
VL  - 467
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a1/
LA  - ru
ID  - ZNSL_2018_467_a1
ER  - 
%0 Journal Article
%A T. A. Bolokhov
%T Resolvents of selfadjoint extensions of the Laplace operator on the solenoidal subspace
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 21-29
%V 467
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a1/
%G ru
%F ZNSL_2018_467_a1
T. A. Bolokhov. Resolvents of selfadjoint extensions of the Laplace operator on the solenoidal subspace. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 21-29. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a1/

[1] R. D. Rikhtmaier, Printsipy sovremennoi matematicheskoi fiziki, v. 1, Mir, M., 1982, 486 pp.

[2] T. A. Bolokhov, “Rasshireniya kvadratichnoi formy vektornogo poperechnogo operatora Laplasa”, Zap. nauchn. semin. POMI, 433, 2015, 78–110 | MR

[3] T. A. Bolokhov, “Svoistva radialnoi chasti operatora Laplasa pri $l=1$ v spetsialnom skalyarnom proizvedenii”, Zap. nauchn. semin. POMI, 434, 2015, 32–52 | MR

[4] T. A. Bolokhov, Rasshireniya kvadratichnykh form vektornogo operatora Laplasa i singulyarnye vozmuscheniya operatora Shredingera, Avtoreferat kand. fiz.-mat. nauk, SPb., 2018, 16 pp.

[5] M. G. Krein, “Teoriya samosopryazhennykh rasshirenii poluogranichennykh ermitovykh operatorov i ee prilozheniya”, Mat. sb., 20(63):3 (1947), 431–495 | MR | Zbl

[6] V. Khatson, Dzh. S. Pim, Prilozheniya funktsionalnogo analiza i teoriya operatorov, Per. s angl., Mir, M., 1983, 432 pp.

[7] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Garmonicheskii analiz i samosopryazhennost, Mir, M., 1978, 395 pp.

[8] R. G. Barrera, G. A. Estevez, J. Giraldo, “Vector spherical harmonics and their application to magnetostatics”, European J. Phys., 6:4 (1985), 287–294 | DOI

[9] V. M. Bruk, “Ob odnom klasse kraevykh zadach so spektralnym parametrom v granichnom uslovii”, Mat. sb., 100(142):2 (1976), 210–216 | MR | Zbl

[10] A. N. Kochubei, “O rasshireniyakh simmetricheskikh operatorov i simmetricheskikh binarnykh otnoshenii”, Mat. zametki, 17:1 (1975), 41–48 | MR | Zbl

[11] M. I. Vishik, “Ob obschikh kraevykh zadachakh dlya ellipticheskikh differentsialnykh uravnenii”, Tr. MMO, 1, GITTL, M.–L., 1952, 187–246 | MR | Zbl

[12] M. Sh. Birman, “K teorii samosopryazhennykh rasshirenii polozhitelno opredelennykh operatorov”, Mat. sb., 38(80):4 (1956), 431–450 | MR | Zbl