Resolvents of selfadjoint extensions of the Laplace operator on the solenoidal subspace
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 21-29

Voir la notice de l'article provenant de la source Math-Net.Ru

On the space of solenoidal vector-valued functions vanishing at the origin with their derivatives, the Laplace operator is symmetric and has defect indices $(3,3)$. With the help of the Krein formula, an expression for the kernel of the resolvent for selfadjoint extensions of this operator is found as the sum of the Green function for the Laplace operator on the space of all vector-valued functions and a certain finite rank addendum.
@article{ZNSL_2018_467_a1,
     author = {T. A. Bolokhov},
     title = {Resolvents of selfadjoint extensions of the {Laplace} operator on the solenoidal subspace},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {21--29},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a1/}
}
TY  - JOUR
AU  - T. A. Bolokhov
TI  - Resolvents of selfadjoint extensions of the Laplace operator on the solenoidal subspace
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 21
EP  - 29
VL  - 467
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a1/
LA  - ru
ID  - ZNSL_2018_467_a1
ER  - 
%0 Journal Article
%A T. A. Bolokhov
%T Resolvents of selfadjoint extensions of the Laplace operator on the solenoidal subspace
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 21-29
%V 467
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a1/
%G ru
%F ZNSL_2018_467_a1
T. A. Bolokhov. Resolvents of selfadjoint extensions of the Laplace operator on the solenoidal subspace. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 21-29. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a1/