A note on a~conjecture by Khabibullin
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 7-20

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that for $n=2$ and $\alpha>1/2$ Khabibullin's conjecture is not true.
@article{ZNSL_2018_467_a0,
     author = {A. B\"erd\"ellima},
     title = {A note on a~conjecture by {Khabibullin}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--20},
     publisher = {mathdoc},
     volume = {467},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a0/}
}
TY  - JOUR
AU  - A. Bërdëllima
TI  - A note on a~conjecture by Khabibullin
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 7
EP  - 20
VL  - 467
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a0/
LA  - en
ID  - ZNSL_2018_467_a0
ER  - 
%0 Journal Article
%A A. Bërdëllima
%T A note on a~conjecture by Khabibullin
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 7-20
%V 467
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a0/
%G en
%F ZNSL_2018_467_a0
A. Bërdëllima. A note on a~conjecture by Khabibullin. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 7-20. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a0/