@article{ZNSL_2018_467_a0,
author = {A. B\"erd\"ellima},
title = {A note on a~conjecture by {Khabibullin}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--20},
year = {2018},
volume = {467},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a0/}
}
A. Bërdëllima. A note on a conjecture by Khabibullin. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 7-20. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a0/
[1] R. A. Baladai, B. N. Khabibullin, “Three equivalent hypotheses on estimation of integrals”, Ufa Math. J., 2:3 (2010), 31–38 | Zbl
[2] A. Bërdëllima, “About a conjecture regarding plurisubharmonic functions”, Ufa Math. J., 7:4 (2015), 154–165 | DOI | MR
[3] B. N. Khabibullin, “Paley problem for plurisubharmonic functions of finite lower order”, Sbornik Mathematics, 190:2 (1999), 145–157 | DOI | MR | Zbl
[4] B. N. Khabibullin, A conjecture on some estimates for integrals, 2010, arXiv: 1005.3913
[5] B. N. Khabibullin, “The representation of a meromorphic function as the quotient of entire functions and Paley problem in $\mathbb C_n$: survey of some results”, Math. Phys. Anal., and Geometry (Ukraine), 9:2 (2002), 146–167 | MR | Zbl
[6] R. A. Sharipov, A note on Khabibullin's conjecture for integral inequalities, 2010, arXiv: 1008.0376
[7] R. A. Sharipov, “A counterexample to Khabibullin's conjecture for integral inequalities”, Ufa Math. J., 2:4 (2010), 99–107 | Zbl
[8] J. Stewart, Calculus: Early Transcendentals, 8th Ed., Boston, 2016, 305, 394