A note on a conjecture by Khabibullin
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 7-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We show that for $n=2$ and $\alpha>1/2$ Khabibullin's conjecture is not true.
@article{ZNSL_2018_467_a0,
     author = {A. B\"erd\"ellima},
     title = {A note on a~conjecture by {Khabibullin}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--20},
     year = {2018},
     volume = {467},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a0/}
}
TY  - JOUR
AU  - A. Bërdëllima
TI  - A note on a conjecture by Khabibullin
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 7
EP  - 20
VL  - 467
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a0/
LA  - en
ID  - ZNSL_2018_467_a0
ER  - 
%0 Journal Article
%A A. Bërdëllima
%T A note on a conjecture by Khabibullin
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 7-20
%V 467
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a0/
%G en
%F ZNSL_2018_467_a0
A. Bërdëllima. A note on a conjecture by Khabibullin. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 46, Tome 467 (2018), pp. 7-20. http://geodesic.mathdoc.fr/item/ZNSL_2018_467_a0/

[1] R. A. Baladai, B. N. Khabibullin, “Three equivalent hypotheses on estimation of integrals”, Ufa Math. J., 2:3 (2010), 31–38 | Zbl

[2] A. Bërdëllima, “About a conjecture regarding plurisubharmonic functions”, Ufa Math. J., 7:4 (2015), 154–165 | DOI | MR

[3] B. N. Khabibullin, “Paley problem for plurisubharmonic functions of finite lower order”, Sbornik Mathematics, 190:2 (1999), 145–157 | DOI | MR | Zbl

[4] B. N. Khabibullin, A conjecture on some estimates for integrals, 2010, arXiv: 1005.3913

[5] B. N. Khabibullin, “The representation of a meromorphic function as the quotient of entire functions and Paley problem in $\mathbb C_n$: survey of some results”, Math. Phys. Anal., and Geometry (Ukraine), 9:2 (2002), 146–167 | MR | Zbl

[6] R. A. Sharipov, A note on Khabibullin's conjecture for integral inequalities, 2010, arXiv: 1008.0376

[7] R. A. Sharipov, “A counterexample to Khabibullin's conjecture for integral inequalities”, Ufa Math. J., 2:4 (2010), 99–107 | Zbl

[8] J. Stewart, Calculus: Early Transcendentals, 8th Ed., Boston, 2016, 305, 394