A probabilistic approximation of the evolution operator $\exp(t(S\nabla,\nabla))$ with a~complex matrix~$S$
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 134-144

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some problems concerning a probabilistic interpretation of the Cauchy problem solution for the equation $\frac{\partial u}{\partial t}=\frac12(S\nabla,\nabla)u$, where $S$ is a symmetric complex matrix such that $\operatorname{Re}S\ge0$.
@article{ZNSL_2017_466_a9,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {A probabilistic approximation of the evolution operator $\exp(t(S\nabla,\nabla))$ with a~complex matrix~$S$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {134--144},
     publisher = {mathdoc},
     volume = {466},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a9/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - A probabilistic approximation of the evolution operator $\exp(t(S\nabla,\nabla))$ with a~complex matrix~$S$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 134
EP  - 144
VL  - 466
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a9/
LA  - ru
ID  - ZNSL_2017_466_a9
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A N. V. Smorodina
%A M. M. Faddeev
%T A probabilistic approximation of the evolution operator $\exp(t(S\nabla,\nabla))$ with a~complex matrix~$S$
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 134-144
%V 466
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a9/
%G ru
%F ZNSL_2017_466_a9
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. A probabilistic approximation of the evolution operator $\exp(t(S\nabla,\nabla))$ with a~complex matrix~$S$. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 134-144. http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a9/