On minimax nonparametric estimation on maxisets
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 120-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For the problem of nonparametric estimation of signal in Gaussian noise we point out the strong asymptotically minimax estimators on maxisets for linear estimators. It turns out that the order of rates of convergence of Pinsker estimator on this maxisets is worse than the order of rates of convergence for the class of linear estimators considered on this maxisets. We show that balls in Sobolev spaces are maxisets for Pinsker estimators.
@article{ZNSL_2017_466_a8,
     author = {M. S. Ermakov},
     title = {On minimax nonparametric estimation on maxisets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {120--133},
     year = {2017},
     volume = {466},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a8/}
}
TY  - JOUR
AU  - M. S. Ermakov
TI  - On minimax nonparametric estimation on maxisets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 120
EP  - 133
VL  - 466
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a8/
LA  - ru
ID  - ZNSL_2017_466_a8
ER  - 
%0 Journal Article
%A M. S. Ermakov
%T On minimax nonparametric estimation on maxisets
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 120-133
%V 466
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a8/
%G ru
%F ZNSL_2017_466_a8
M. S. Ermakov. On minimax nonparametric estimation on maxisets. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 120-133. http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a8/

[1] K. Bertin, “Asymptotically exact minimax estimation in sup-norm for anisotropic Hölder classes”, Bernoulli, 10 (2004), 873–888 | DOI | MR | Zbl

[2] L. Cavalier, “Inverse problems in statistics”, Inverse problems and high-dimensional estimation, Lect. Notes Statist., 203, Springer, 2011, 3–96 | DOI | MR

[3] D. L. Donoho, “Asymptotic minimax risk for sup-norm loss: solution via optimal recovery”, Probab. Theory Relat. Fields, 99 (1994), 145–170 | DOI | MR | Zbl

[4] D. L. Donoho, I. M. Johnstone, “Minimax estimation via wavelet shrinkage”, Ann. Statist., 26 (1998), 879–921 | DOI | MR | Zbl

[5] P. B. Eggermont, V. N. LaRiccia, Maximum Penalized Likelyhood Estimation, v. II, Springer, 2009 | MR

[6] D. Hsu, S. M. Kakade, T. Zang, “A tail inequality for quadratic forms of subgaussian random vector”, Electronic Commun. Probab., 17 (2012), 1–6 | DOI | MR

[7] I. Ibragimov, R. Khasminskii, Statistical Estimation: Asymptotic Theory, Springer, 1981 | MR | Zbl

[8] Yu. I. Ingster, T. Sapatinas, I. A. Suslina, “Minimax signal detection in ill-posed inverse problems”, Ann. Statist., 40 (2012), 1524–1549 | DOI | MR | Zbl

[9] I. M. Johnstone, Gaussian Estimation. Sequence and Wavelet Models, Book Draft , 2015 http://statweb.stanford.edu/~imj/

[10] J. M. Loubes, V. Rivoirard, “Review of rates of convergence and regularity conditions for inverse problems”, Intern. J. Tomography Statist., 11 (2009), 61–82 | MR

[11] G. Kerkyacharian, D. Picard, “Density estimation by kernel and wavelets methods: optimality of Besov spaces”, Statist. Probab. Lett., 18 (1993), 327–336 | DOI | MR | Zbl

[12] G. Kerkyacharian, D. Picard, “Minimax or maxisets?”, Bernoulli, 8 (2002), 219–253 | MR | Zbl

[13] A. P. Korostelev, “Asimptoticheski minimaksnoe otsenivanie regressii v ravnomernoi norme s tochnostyu do konstanty”, Teoriya veroyatn. i ee primen., 38:4 (1993), 857–882 | MR | Zbl

[14] D. A. Kuks, V. Olman, “Minimaksnaya lineinaya otsenka koeffitsientov regressii”, Izv. Akad. nauk Est. SSR, 20 (1971), 480–482 | MR | Zbl

[15] O. V. Lepski, A. B. Tsybakov, “Asymptotically exact nonparametric hypothesis testing in supnorm and at a fixed point”, Probab. Theory Relat. Fields, 117 (2000), 17–48 | DOI | MR | Zbl

[16] A. S. Nemirovskii, “Nonparametric estimation of smooth regression functions”, Soviet J. Comput. Syst. Sci., 23 (1985), 1–11 | MR

[17] M. Nussbaum, “Spline smoothing in regression models and asymptotic efficiency in $L_2$”, Ann. Statist., 13 (1985), 984–997 | DOI | MR | Zbl

[18] M. S. Pinsker, “Optimalnaya filtratsiya kvadratichno-integriruemykh signalov na fone gaussovskogo shuma”, Probl. peredachi inform., 16:2 (1980), 52–68 | MR | Zbl

[19] V. Rivoirard, “Maxisets for linear procedures”, Statist. Probab. Lett., 67 (2004), 267–275 | DOI | MR | Zbl

[20] A. Tikhonov, “Regularization of incorrectly posed problems”, Soviet Math. Dokl., 4 (1963), 1624–1627 | Zbl

[21] A. Tsybakov, Introduction to Nonparametric Estimation, Springer Series in Statistics, 130, Springer, 2009 | DOI | MR

[22] G. Wahba, Spline Models for Observational Data, SIAM, 1990 | MR | Zbl