@article{ZNSL_2017_466_a8,
author = {M. S. Ermakov},
title = {On minimax nonparametric estimation on maxisets},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {120--133},
year = {2017},
volume = {466},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a8/}
}
M. S. Ermakov. On minimax nonparametric estimation on maxisets. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 120-133. http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a8/
[1] K. Bertin, “Asymptotically exact minimax estimation in sup-norm for anisotropic Hölder classes”, Bernoulli, 10 (2004), 873–888 | DOI | MR | Zbl
[2] L. Cavalier, “Inverse problems in statistics”, Inverse problems and high-dimensional estimation, Lect. Notes Statist., 203, Springer, 2011, 3–96 | DOI | MR
[3] D. L. Donoho, “Asymptotic minimax risk for sup-norm loss: solution via optimal recovery”, Probab. Theory Relat. Fields, 99 (1994), 145–170 | DOI | MR | Zbl
[4] D. L. Donoho, I. M. Johnstone, “Minimax estimation via wavelet shrinkage”, Ann. Statist., 26 (1998), 879–921 | DOI | MR | Zbl
[5] P. B. Eggermont, V. N. LaRiccia, Maximum Penalized Likelyhood Estimation, v. II, Springer, 2009 | MR
[6] D. Hsu, S. M. Kakade, T. Zang, “A tail inequality for quadratic forms of subgaussian random vector”, Electronic Commun. Probab., 17 (2012), 1–6 | DOI | MR
[7] I. Ibragimov, R. Khasminskii, Statistical Estimation: Asymptotic Theory, Springer, 1981 | MR | Zbl
[8] Yu. I. Ingster, T. Sapatinas, I. A. Suslina, “Minimax signal detection in ill-posed inverse problems”, Ann. Statist., 40 (2012), 1524–1549 | DOI | MR | Zbl
[9] I. M. Johnstone, Gaussian Estimation. Sequence and Wavelet Models, Book Draft , 2015 http://statweb.stanford.edu/~imj/
[10] J. M. Loubes, V. Rivoirard, “Review of rates of convergence and regularity conditions for inverse problems”, Intern. J. Tomography Statist., 11 (2009), 61–82 | MR
[11] G. Kerkyacharian, D. Picard, “Density estimation by kernel and wavelets methods: optimality of Besov spaces”, Statist. Probab. Lett., 18 (1993), 327–336 | DOI | MR | Zbl
[12] G. Kerkyacharian, D. Picard, “Minimax or maxisets?”, Bernoulli, 8 (2002), 219–253 | MR | Zbl
[13] A. P. Korostelev, “Asimptoticheski minimaksnoe otsenivanie regressii v ravnomernoi norme s tochnostyu do konstanty”, Teoriya veroyatn. i ee primen., 38:4 (1993), 857–882 | MR | Zbl
[14] D. A. Kuks, V. Olman, “Minimaksnaya lineinaya otsenka koeffitsientov regressii”, Izv. Akad. nauk Est. SSR, 20 (1971), 480–482 | MR | Zbl
[15] O. V. Lepski, A. B. Tsybakov, “Asymptotically exact nonparametric hypothesis testing in supnorm and at a fixed point”, Probab. Theory Relat. Fields, 117 (2000), 17–48 | DOI | MR | Zbl
[16] A. S. Nemirovskii, “Nonparametric estimation of smooth regression functions”, Soviet J. Comput. Syst. Sci., 23 (1985), 1–11 | MR
[17] M. Nussbaum, “Spline smoothing in regression models and asymptotic efficiency in $L_2$”, Ann. Statist., 13 (1985), 984–997 | DOI | MR | Zbl
[18] M. S. Pinsker, “Optimalnaya filtratsiya kvadratichno-integriruemykh signalov na fone gaussovskogo shuma”, Probl. peredachi inform., 16:2 (1980), 52–68 | MR | Zbl
[19] V. Rivoirard, “Maxisets for linear procedures”, Statist. Probab. Lett., 67 (2004), 267–275 | DOI | MR | Zbl
[20] A. Tikhonov, “Regularization of incorrectly posed problems”, Soviet Math. Dokl., 4 (1963), 1624–1627 | Zbl
[21] A. Tsybakov, Introduction to Nonparametric Estimation, Springer Series in Statistics, 130, Springer, 2009 | DOI | MR
[22] G. Wahba, Spline Models for Observational Data, SIAM, 1990 | MR | Zbl