On the convergence of multidimensional workload in a service system to a stable process
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 96-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A service system model introduced by I. Kaj and M. S. Taqqu is considered. We prove a limit theorem on the convergence of finite-dimensional distributions of the integral workload process with a multidimensional resource to the corresponding distributions of a multidimensional stable process.
@article{ZNSL_2017_466_a6,
     author = {E. S. Garai},
     title = {On the convergence of multidimensional workload in a~service system to a~stable process},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {96--108},
     year = {2017},
     volume = {466},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a6/}
}
TY  - JOUR
AU  - E. S. Garai
TI  - On the convergence of multidimensional workload in a service system to a stable process
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 96
EP  - 108
VL  - 466
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a6/
LA  - ru
ID  - ZNSL_2017_466_a6
ER  - 
%0 Journal Article
%A E. S. Garai
%T On the convergence of multidimensional workload in a service system to a stable process
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 96-108
%V 466
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a6/
%G ru
%F ZNSL_2017_466_a6
E. S. Garai. On the convergence of multidimensional workload in a service system to a stable process. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 96-108. http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a6/

[1] I. Kaj, M. S. Taqqu, “Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach”, In and Out of Equilibtium, v. II, Progress in Probability, 60, Birkhäuser, Basel, 2008, 383–427 | MR | Zbl

[2] M. A. Lifshits, Sluchainye protsessy – ot teorii k praktike, Lan, Sankt-Peterburg, 2016

[3] H. Biermé, A. Estrade, I. Kaj, “Self–similar random fields and rescaled random balls models”, J. Theor. Probab., 23:4 (2010), 1110–1141 | DOI | MR | Zbl

[4] J.-C. Breton, C. Dombry, “Self-similar random fields and rescaled random balls models”, Stoch. Proc. Appl., 119:10 (2009), 3633–3652 | DOI | MR | Zbl

[5] I. Kaj, L. Leskelä, I. Norros, V. Schmidt, “Scaling limits for random fields with long-range dependence”, Ann. Probab., 35:2 (2007), 528–550 | DOI | MR | Zbl

[6] A. N. Shiryaev, Veroyatnost, Nauka, M., 1980 | MR

[7] A. V. Skorokhod, Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, M., 1964 | MR

[8] A. V. Skorokhod, Issledovaniya po teorii sluchainykh protsessov, izd-vo KGU, Kiev, 1961 | MR

[9] B. V. Gnedenko, Kurs teorii veroyatnostei, URSS, M., 2004 | MR

[10] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965 | MR