Goodness-of-fit tests based on the characterization of uniformity by the ratio of order statistics, and their efficiencies
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 67-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct integral and supremum type goodness-of-fit tests for the uniform law based on Ahsanullah's characterization of uniform law. We discuss limiting distributions of new tests and describe the logarithmic large deviation asymptotics of test statistics under null-hypothesis. This enables to calculate their local Bahadur efficiency under some parametric alternatives. Conditions of local optimality of new statistics are given.
@article{ZNSL_2017_466_a4,
     author = {K. Yu. Volkova and M. S. Karakulov and Ya. Yu. Nikitin},
     title = {Goodness-of-fit tests based on the characterization of uniformity by the ratio of order statistics, and their efficiencies},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--80},
     year = {2017},
     volume = {466},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a4/}
}
TY  - JOUR
AU  - K. Yu. Volkova
AU  - M. S. Karakulov
AU  - Ya. Yu. Nikitin
TI  - Goodness-of-fit tests based on the characterization of uniformity by the ratio of order statistics, and their efficiencies
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 67
EP  - 80
VL  - 466
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a4/
LA  - ru
ID  - ZNSL_2017_466_a4
ER  - 
%0 Journal Article
%A K. Yu. Volkova
%A M. S. Karakulov
%A Ya. Yu. Nikitin
%T Goodness-of-fit tests based on the characterization of uniformity by the ratio of order statistics, and their efficiencies
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 67-80
%V 466
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a4/
%G ru
%F ZNSL_2017_466_a4
K. Yu. Volkova; M. S. Karakulov; Ya. Yu. Nikitin. Goodness-of-fit tests based on the characterization of uniformity by the ratio of order statistics, and their efficiencies. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 67-80. http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a4/

[1] M. Ahsanullah, “On characterizations of the uniform distribution based on functions of order statistics”, Aligarh J. Statist., 9 (1989), 1–6 | MR | Zbl

[2] R. R. Bahadur, Some Limit Theorems in Statistics, SIAM, Philadelphia, 1971 | MR | Zbl

[3] R. R. Bahadur, “Stochastic comparison of tests”, Ann. Math. Statist., 31 (1960), 276–295 | DOI | MR | Zbl

[4] R. R. Bahadur, “Rates of convergence of estimates and test statistics”, Ann. Math. Statist., 38 (1967), 303–324 | DOI | MR | Zbl

[5] L. Baringhaus, N. Henze, “Tests of fit for exponentiality based on a characterization via the mean residual life function”, Statist. Papers, 41 (2000), 225–236 | DOI | MR | Zbl

[6] A. DasGupta, Asymptotic Theory of Statistics and Probability, Springer, New York, 2008 | MR | Zbl

[7] T. Hashimoto, S. Shirahata, “A goodness-of-fit test based on a characterization of uniform distribution”, J. Japan Statist. Soc., 23:2 (1993), 123–130 | MR | Zbl

[8] N. Henze, S. Meintanis, “Goodness-of-fit tests based on a new characterization of the exponential distribution”, Commun. Statist. Theor. Meth., 31 (2002), 1479–1497 | DOI | MR | Zbl

[9] R. Helmers, P. Janssen, R. Serfling, “Glivenko–Cantelli properties of some generalized empirical DF's and strong convergence of generalized $L$-statistics”, Probab. Theor. Relat. Fields, 79 (1988), 75–93 | DOI | MR | Zbl

[10] M. Jovanović, B. Milošević, Ya. Yu. Nikitin, M. Obradović, K. Yu. Volkova, “Tests of exponentiality based on Arnold–Villasenor characterization and their efficiencies”, Computat. Statist. Data Anal., 90 (2015), 100–113 | DOI | MR

[11] V. S. Korolyuk, Y. V. Borovskich, Theory of $U$-statistics, 2nd ed., Springer Science and Business Media, 2013 | MR

[12] B. Milošević, Asymptotic Efficiency of Goodness-of-fit Tests Based on Too-Lin Characterization, 2015, arXiv: 1508.05314

[13] B. Milošević, “Asymptotic efficiency of new exponentiality tests based on a characterization”, Metrika, 79 (2016), 221–236 | DOI | MR | Zbl

[14] K. Morris, D. Szynal, “Goodness-of-fit tests using characterizations of continuous distributions”, Appl. Math. (Warsaw), 28 (2001), 151–168 | DOI | MR | Zbl

[15] Y. Nikitin, Asymptotic Efficiency of Nonparametric Tests, Cambridge University Press, New York, 1995 | MR | Zbl

[16] Ya. Yu. Nikitin, “Large deviations of $U$-empirical Kolmogorov-Smirnov tests, and their efficiency”, J. Nonpar. Statist., 22 (2010), 649–668 | DOI | MR | Zbl

[17] Ya. Yu. Nikitin, “Tests based on characterizations, and their efficiencies”, Acta et Comment. Univ. Tartuens. Matem., 21:1 (2017), 3–24 | MR

[18] P. Muliere, Y. Nikitin, “Scale-invariant test of normality based on Polya's characterization”, Metron, 60:1–2 (2002), 21–33 | MR | Zbl

[19] Ya. Yu. Nikitin, I. Peaucelle, “Efficiency and local optimality of distribution-free tests based on $U$ and $V$-statistics”, Metron, 62 (2004), 185–200 | MR

[20] AMS Transl. Ser. 2, 203, 2001, 107–146 | MR | Zbl

[21] Ya. Yu. Nikitin, A. V. Tchirina, “Lilliefors test for exponentiality: large deviations, asymptotic efficiency, and conditions of local optimality”, Math. Meth. Statist., 16:1 (2007), 16–24 | DOI | MR | Zbl

[22] Ya. Yu. Nikitin, K. Yu. Volkova, “Asymptotic efficiency of exponentiality tests based on order statistics characterization”, Georgian Math. J., 17 (2010), 749–763 | MR | Zbl

[23] M. Obradović, “Three characterizations of exponential distribution involving the median of sample of size three”, J. Statist. Theory Appl., 14 (2015), 257–264 | DOI | MR

[24] M. Obradovic, M. Jovanovic, B. Milosevic, “Goodness-of-fit tests for Pareto distribution based on a characterization and their asymptotics”, Statistics, 49 (2015), 1026–1041 | DOI | MR | Zbl

[25] B. W. Silverman, “Convergence of a class of empirical distribution functions of dependent random variables”, Ann. Probab., 11 (1983), 745–751 | DOI | MR | Zbl