On unattainable boundaries of a diffusion process range of values: semi-Markov approach
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 313-330 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

One-dimensional homogeneous semi-Markov processes of diffusion type are considered. A transition function of such a process satisfy an ordinary second order differential equation. It is supposed that the process does not break and has no any interval of constancy. Under these conditions the Dirihlet problem has a solution on any finite interval. This solution is presented in explicit form in terms of solutions having values 1, and 0 on the boundaries of the interval. A criterion for the left boundary of the interval to be unattainable is derived, and for corresponding values 0, and 1 a criterion for the right boundary of the interval to be unattainable is derived. This criterion being applied to a diffusion process follows from known formulas which are derived by considerably complex methods of the stochastic differential equations theory.
@article{ZNSL_2017_466_a20,
     author = {B. P. Harlamov},
     title = {On unattainable boundaries of a~diffusion process range of values: {semi-Markov} approach},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {313--330},
     year = {2017},
     volume = {466},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a20/}
}
TY  - JOUR
AU  - B. P. Harlamov
TI  - On unattainable boundaries of a diffusion process range of values: semi-Markov approach
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 313
EP  - 330
VL  - 466
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a20/
LA  - ru
ID  - ZNSL_2017_466_a20
ER  - 
%0 Journal Article
%A B. P. Harlamov
%T On unattainable boundaries of a diffusion process range of values: semi-Markov approach
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 313-330
%V 466
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a20/
%G ru
%F ZNSL_2017_466_a20
B. P. Harlamov. On unattainable boundaries of a diffusion process range of values: semi-Markov approach. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 313-330. http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a20/

[1] E. B. Dynkin, Markovskie protsessy, FM, M., 1963 | MR

[2] I. I. Gikhman, A. V. Skorokhod, Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968 | MR

[3] Yu. A. Rozanov, Sluchainye protsessy, Nauka, M., 1979 | MR

[4] B. P. Kharlamov, Nepreryvnye polumarkovskie protsessy, Nauka, SPb, 2001 | MR

[5] B. P. Kharlamov, “Diffuzionnyi protsess s zaderzhkoi na krayakh otrezka”, Zap. nauchn. semin. POMI, 351, 2007, 284–297

[6] B. P. Kharlamov, “O markovskom diffuzionnom protsesse s zamedlennym otrazheniem na granitse otrezka”, Zap. nauchn. semin. POMI, 368, 2009, 243–267

[7] B. P. Kharlamov, “O tochkakh zaderzhki i asimmetrii odnomernogo diffuzionnogo protsessa”, Zap. nauchn. semin. POMI, 384, 2010, 291–309

[8] B. P. Kharlamov, S. S. Rasova, “O dvizhenii brounovskikh chastits vdol zaderzhivayuschego ekrana”, Zap. nauchn. semin. POMI, 396, 2011, 175–194 | MR

[9] B. P. Kharlamov, “Sokhranenie markovosti pri zamedlennom otrazhenii”, Zap. nauchn. semin. POMI, 420, 2013, 157–174

[10] A. S. Cherny, H.-J. Engelbert, Singular Stochastic Differential Equations, Shpringer, Berlin–Heidelberg–New York, 2005 | MR

[11] Th. Mikosch, Non-life insurance mathematics, Springer-Verlag, Berlin, 2004 | MR | Zbl