The connection between the selection problem for a sparse submatrix of a large-size matrix and the Bayes problem of hypothesis testing
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 300-312 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We associate the selection problem for a sparse submatrix of a matrix of large dimension and the problem of testing the hypothesis of the existence of a sparse submatrix possessing the required properties with the Bayesian hypothesis testing problem.
@article{ZNSL_2017_466_a19,
     author = {I. A. Suslina and O. V. Sokolov},
     title = {The connection between the selection problem for a~sparse submatrix of a~large-size matrix and the {Bayes} problem of hypothesis testing},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {300--312},
     year = {2017},
     volume = {466},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a19/}
}
TY  - JOUR
AU  - I. A. Suslina
AU  - O. V. Sokolov
TI  - The connection between the selection problem for a sparse submatrix of a large-size matrix and the Bayes problem of hypothesis testing
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 300
EP  - 312
VL  - 466
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a19/
LA  - ru
ID  - ZNSL_2017_466_a19
ER  - 
%0 Journal Article
%A I. A. Suslina
%A O. V. Sokolov
%T The connection between the selection problem for a sparse submatrix of a large-size matrix and the Bayes problem of hypothesis testing
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 300-312
%V 466
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a19/
%G ru
%F ZNSL_2017_466_a19
I. A. Suslina; O. V. Sokolov. The connection between the selection problem for a sparse submatrix of a large-size matrix and the Bayes problem of hypothesis testing. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 300-312. http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a19/

[1] C. Butucea, Y. I. Ingster, I. A. Suslina, “Sharp variable selection of a sparse submatrix in a high-dimensional noisy matrix”, ESAIM: Probab. Statist., 19 (2015), 115–134 | DOI | MR | Zbl

[2] M. Kolar, S. Balakrishnan, A. Rinaldo, A. Singh, “Minimax localization of structural information in large noisy matrices”, Advances in Neural Information Processing Systems, 24, eds. J. Shawe-Taylor et al., NIPS, 2011, 909–917

[3] C. Butucea, Y. I. Ingster, “Detection of a sparse submatrix of a high-dimensional noisy matrix”, Bernoulli, 19:5B (2013), 2652–2688 | DOI | MR | Zbl

[4] C. Butucea, G. Gayraud, “Sharp detection of smooth signals in a high-dimensional sparse matrix with indirect observations”, Ann. Inst. H. Poincaré: Probab. Statist., 52:4 (2016), 1564–1591 | DOI | MR | Zbl

[5] X. Sun, A. B. Nobel, “On the maximal size of large-average and ANOVA-fit submatrices in a Gaussian random matrix”, Bernoulli, 19:1 (2013), 275–294 | DOI | MR | Zbl