A local version of the Muckenhoupt condition and the accuracy of estimation of the unknown pseudo periodic function in stationary noise
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 289-299
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, we construct the lower and upper bounds of the minimax risk in the estimation problem, as we observe the unknoun pseudo periodic function in stationary noise with a density satisfying the local version of the Muckenhoupt condition.
@article{ZNSL_2017_466_a18,
author = {V. N. Solev},
title = {A local version of the {Muckenhoupt} condition and the accuracy of estimation of the unknown pseudo periodic function in stationary noise},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {289--299},
publisher = {mathdoc},
volume = {466},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a18/}
}
TY - JOUR AU - V. N. Solev TI - A local version of the Muckenhoupt condition and the accuracy of estimation of the unknown pseudo periodic function in stationary noise JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 289 EP - 299 VL - 466 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a18/ LA - ru ID - ZNSL_2017_466_a18 ER -
%0 Journal Article %A V. N. Solev %T A local version of the Muckenhoupt condition and the accuracy of estimation of the unknown pseudo periodic function in stationary noise %J Zapiski Nauchnykh Seminarov POMI %D 2017 %P 289-299 %V 466 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a18/ %G ru %F ZNSL_2017_466_a18
V. N. Solev. A local version of the Muckenhoupt condition and the accuracy of estimation of the unknown pseudo periodic function in stationary noise. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 289-299. http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a18/