A probabilistic approximation of the Cauchy problem solution for the Schr\"odinger equation with a~fractional derivative operator
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 257-272
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct two types of probabilistic approximations of the Cauchy problem solution for the nonstationary Schrödinger equation with a symmetric fractional derivative of order $\alpha\in(1,2)$ on the right hand side. In the first case we approximate the solution by a mathematical expectation of point Poisson field functionals and in the second case we approximate the solution by a mathematical expectation of functionals of sums of independent random variables with a power asymptotics of a tail distribution.
@article{ZNSL_2017_466_a16,
author = {M. V. Platonova and S. V. Tsykin},
title = {A probabilistic approximation of the {Cauchy} problem solution for the {Schr\"odinger} equation with a~fractional derivative operator},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {257--272},
publisher = {mathdoc},
volume = {466},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a16/}
}
TY - JOUR AU - M. V. Platonova AU - S. V. Tsykin TI - A probabilistic approximation of the Cauchy problem solution for the Schr\"odinger equation with a~fractional derivative operator JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 257 EP - 272 VL - 466 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a16/ LA - ru ID - ZNSL_2017_466_a16 ER -
%0 Journal Article %A M. V. Platonova %A S. V. Tsykin %T A probabilistic approximation of the Cauchy problem solution for the Schr\"odinger equation with a~fractional derivative operator %J Zapiski Nauchnykh Seminarov POMI %D 2017 %P 257-272 %V 466 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a16/ %G ru %F ZNSL_2017_466_a16
M. V. Platonova; S. V. Tsykin. A probabilistic approximation of the Cauchy problem solution for the Schr\"odinger equation with a~fractional derivative operator. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 257-272. http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a16/