@article{ZNSL_2017_466_a16,
author = {M. V. Platonova and S. V. Tsykin},
title = {A probabilistic approximation of the {Cauchy} problem solution for the {Schr\"odinger} equation with a~fractional derivative operator},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {257--272},
year = {2017},
volume = {466},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a16/}
}
TY - JOUR AU - M. V. Platonova AU - S. V. Tsykin TI - A probabilistic approximation of the Cauchy problem solution for the Schrödinger equation with a fractional derivative operator JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 257 EP - 272 VL - 466 UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a16/ LA - ru ID - ZNSL_2017_466_a16 ER -
%0 Journal Article %A M. V. Platonova %A S. V. Tsykin %T A probabilistic approximation of the Cauchy problem solution for the Schrödinger equation with a fractional derivative operator %J Zapiski Nauchnykh Seminarov POMI %D 2017 %P 257-272 %V 466 %U http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a16/ %G ru %F ZNSL_2017_466_a16
M. V. Platonova; S. V. Tsykin. A probabilistic approximation of the Cauchy problem solution for the Schrödinger equation with a fractional derivative operator. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 257-272. http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a16/
[1] L. M. Zelenyi, A. V. Milovanov, “Fraktalnaya topologiya i strannaya kinetika: ot teorii perkolyatsii k problemam kosmicheskoi elektrodinamiki”, Uspekhi fizicheskikh nauk, 174:8 (2004), 809–852 | DOI
[2] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, Moskva, 1972 | MR
[3] Dzh. Kingman, Puassonovskie protsessy, MTsNMO, Moskva, 2007
[4] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Predelnaya teorema o skhodimosti funktsionalov ot sluchainogo bluzhdaniya k resheniyu zadachi Koshi dlya uravneniya $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\Delta u$ c kompleksnym parametrom $\sigma$”, Zap. nauchn. semin. POMI, 420, 2013, 88–102
[5] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Ob odnoi predelnoi teoreme, svyazannoi s veroyatnostnym predstavleniem resheniya zadachi Koshi s operatorom Shredingera”, Zap. nauchn. semin. POMI, 454, 2016, 158–175 | MR
[6] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, “Nauka i tekhnika”, Minsk, 1987 | MR
[7] V. E. Tarasov, Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka, Izhevskii institut kompyuternykh issledovanii, 2011
[8] V. V. Uchaikin, Metod drobnyx proizvodnykh, “Artishok”, Ulyanovsk, 2008
[9] D. K. Faddeev, B. Z. Vulikh, N. N. Uraltseva, Izbrannye glavy analiza i vysshei algebry, Izd-vo Leningradskogo universiteta, 1981