Asymptotic behavior of the mean number of particles of branching random walk on $\mathbf Z^d$ with periodic sources of branching
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 234-256

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a continuous-time branching random walk on $\mathbf Z^d$ with birth and death of particles at a periodic set of points (the sources of branching). Spectral properties of an evolution operator of the mean number of particles are studied. We derive a representation of the mean value of particle number in a form of asymptotic series.
@article{ZNSL_2017_466_a15,
     author = {M. V. Platonova and K. S. Ryadovkin},
     title = {Asymptotic behavior of the mean number of particles of branching random walk on $\mathbf Z^d$ with periodic sources of branching},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {234--256},
     publisher = {mathdoc},
     volume = {466},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a15/}
}
TY  - JOUR
AU  - M. V. Platonova
AU  - K. S. Ryadovkin
TI  - Asymptotic behavior of the mean number of particles of branching random walk on $\mathbf Z^d$ with periodic sources of branching
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 234
EP  - 256
VL  - 466
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a15/
LA  - ru
ID  - ZNSL_2017_466_a15
ER  - 
%0 Journal Article
%A M. V. Platonova
%A K. S. Ryadovkin
%T Asymptotic behavior of the mean number of particles of branching random walk on $\mathbf Z^d$ with periodic sources of branching
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 234-256
%V 466
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a15/
%G ru
%F ZNSL_2017_466_a15
M. V. Platonova; K. S. Ryadovkin. Asymptotic behavior of the mean number of particles of branching random walk on $\mathbf Z^d$ with periodic sources of branching. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 234-256. http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a15/