Second order Chebyshev–Edgeworth and Cornish–Fisher expansions for distributions of statistics constructed from samples with random sizes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 167-207 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In practice, we often encounter situations where a sample size is not defined in advance and can be a random value. In the present paper second order Chebyshev–Edgeworth and Cornish–Fisher expansions based of Student's $t$- and Laplace distributions and their quantiles are derived for samples with random size of a special kind, using general transfer theorem, which allows to construct asymptotic expansions for distributions of randomly normalized statistics from the distributions of the considered non-randomly normalized statistics and of the random size of the underlying sample. Recently, interest in Cornish–Fisher expansions has increased because of study in risk management. Widespread risk measure Value at Risk (VaR) substantially depends on the quantiles of the loss function, which is connected with description of investment portfolio of financial instruments.
@article{ZNSL_2017_466_a12,
     author = {G. Christoph and M. M. Monakhov and V. V. Ulyanov},
     title = {Second order {Chebyshev{\textendash}Edgeworth} and {Cornish{\textendash}Fisher} expansions for distributions of statistics constructed from samples with random sizes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {167--207},
     year = {2017},
     volume = {466},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a12/}
}
TY  - JOUR
AU  - G. Christoph
AU  - M. M. Monakhov
AU  - V. V. Ulyanov
TI  - Second order Chebyshev–Edgeworth and Cornish–Fisher expansions for distributions of statistics constructed from samples with random sizes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 167
EP  - 207
VL  - 466
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a12/
LA  - ru
ID  - ZNSL_2017_466_a12
ER  - 
%0 Journal Article
%A G. Christoph
%A M. M. Monakhov
%A V. V. Ulyanov
%T Second order Chebyshev–Edgeworth and Cornish–Fisher expansions for distributions of statistics constructed from samples with random sizes
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 167-207
%V 466
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a12/
%G ru
%F ZNSL_2017_466_a12
G. Christoph; M. M. Monakhov; V. V. Ulyanov. Second order Chebyshev–Edgeworth and Cornish–Fisher expansions for distributions of statistics constructed from samples with random sizes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 167-207. http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a12/

[1] B. V. Gnedenko, “Ob otsenke neizvestnykh parametrov raspredeleniya pri sluchainom chisle nezavisimykh nablyudenii”, Trudy Tbilisskogo matematicheskogo instituta im. A. M. Razmadze, 92, 1989, 146–150 | Zbl

[2] B. V. Gnedenko, V. Yu. Korolev, Random Summation, Limit Theorems and Applications, CRC Press, 1996 | MR | Zbl

[3] V. E. Bening, N. K. Galieva, V. Yu. Korolev, “Asimptoticheskie razlozheniya dlya funktsii raspredeleniya statistik, postroennykh po vyborkam sluchainogo ob'ema”, Inform. i ee primen., 7:2 (2013), 75–83

[4] V. E. Bening, N. K. Galieva, V. Yu. Korolev, “Otsenki skorosti skhodimosti dlya funktsii raspredeleniya asimptoticheski normalnykh statistik, osnovannykh na vyborkakh sluchainogo ob'ëma”, Vestnik Tverskogo gosudarstvennogo universiteta. Seriya: Prikladnaya matematika, 2012, no. 2, 53–65

[5] V. E. Bening, V. Yu. Korolev, “Nekotorye statisticheskie zadachi, svyazannye s raspredeleniem Laplasa”, Inform. i ee primen., 2:2 (2008), 19–34

[6] V. E. Bening, V. Yu. Korolev, “Ob ispolzovanii raspredeleniya Styudenta v zadachakh teorii veroyatnostei i matematicheskoi statistiki”, Teoriya veroyatn. i ee primen., 49:3 (2004), 417–435 | DOI | MR | Zbl

[7] C. Schluter, M. Trede, “Weak convergence to the Student and Laplace distributions”, J. Appl. Probab., 53 (2016), 121–129 | DOI | MR | Zbl

[8] E. A. Cornish, R. A. Fisher, “Moments and cumulants in the specification of distributions”, Rev. Inst. Internat. Statist., 4 (1937), 307–320

[9] G. W. Hill, A. W. Davis, “Generalized asymptotic expansions of Cornish–Fisher type”, Ann. Math. Statist., 39 (1968), 1264–1273 | DOI | MR | Zbl

[10] V. V. Ulyanov, “Cornish–Fisher Expansions”, International Encyclopedia of Statistical Science, ed. M. Lovric, Springer, Berlin, 2011, 312–315 | DOI

[11] S. Jaschke, “The Cornish–Fisher expansion in the context of delta-gamma-normal approximations”, J. Risk, 4:2 (2002), 33–52 | DOI

[12] Y. Fujikoshi, V. V. Ulyanov, R. Shimizu, Multivariate Statistics: High-Dimensional and Large-Sample Approximations, Wiley Series in Probability and Statistics, Wiley, Hoboken, N.J., 2010 | DOI | MR | Zbl

[13] V. V. Ulyanov, M. Aoshima, Y. Fujikoshi, “Non-asymptotic results for Cornish–Fisher expansions”, J. Math. Sci., 218:3 (2016), 363–368 | DOI | MR | Zbl

[14] N. L. Johnson, A. W. Kemp, S. Kotz, Univariate Discrete Distributions, Wiley Series in Probability and Statistics, 3rd Edition, 2005 | DOI | MR

[15] A. S. Markov, M. M. Monakhov, V. V. Ulyanov, “Razlozheniya tipa Kornisha–Fishera dlya raspredelenii statistik, postroennykh po vyborkam sluchainogo razmera”, Inform. i ee primen., 10:2 (2016), 84–91 | DOI

[16] A. Buddana, T. J. Kozubowski, “Discrete Pareto distributions”, Econ. Qual. Control, 29:2 (2014), 143–156 | DOI

[17] S. S. Wilks, “Recurrence of extreme observations”, J. Austral. Math. Soc., 1:1 (1959), 106–112 | DOI | MR | Zbl

[18] O. O. Lyamin, “O skorosti skhodimosti raspredelenii nekotorykh statistik k raspredeleniyu Laplasa”, Vestnik Moskovskogo Universiteta. Vychislitelnaya Matematika i Kibernetika, 2010, no. 3, 30–37 | MR | Zbl

[19] G. Christoph, W. Wolf, Convergence Theorems with a Stable Limit Law, Series Mathematical Research, Akademie Verlag, 1993 | MR

[20] G. Nemes, “Error bounds and exponential improvements for the asymptotic expansions of the gamma function and its reciprocal”, Proc. Roy. Soc. Edinburgh, 145 (2015), 571–596 | DOI | MR | Zbl

[21] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, v. 1, Elementarnye funktsii, 2-e izd., isprav., Fizmatgiz, M., 2003 | MR

[22] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987 | MR