@article{ZNSL_2017_466_a11,
author = {V. M. Korchevsky},
title = {On the strong law of large numbers for sequences of pairwise independent random variables},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {159--166},
year = {2017},
volume = {466},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a11/}
}
V. M. Korchevsky. On the strong law of large numbers for sequences of pairwise independent random variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 159-166. http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a11/
[1] N. Etemadi, “An elementary proof of the strong law of large numbers”, Z. Wahrsch. Verw. Gebiete, 55 (1981), 119–122 | DOI | MR | Zbl
[2] P. Matula, “A note on the almost sure convergence of sums negatively dependent random variables”, Statist. Probab. Lett., 15 (1992), 209–213 | DOI | MR | Zbl
[3] P. Matula, “On some families of AQSI random variables and related strong law of large numbers”, Appl. Math. E-Notes, 5 (2005), 31–35 | MR | Zbl
[4] T. K. Chandra, A. Goswami, “Cesáro uniform integrability and a strong laws of large numbers”, Sankhyā Ser. A, 54 (1992), 215–231 | MR | Zbl
[5] A. Bose, T. K. Chandra, “A note on the strong law of large numbers”, Calcutta Statist. Assoc. Bull., 44 (1994), 115–122 | DOI | MR | Zbl
[6] V. M. Kruglov, “Strong law of large numbers”, Stability Problems for Stochastic Models, eds. V. M. Zolotarev, V. M. Kruglov, V. Yu. Korolev, TVP/VSP, Moscow–Utrecht, 1994, 139–150 | Zbl
[7] V. A. Egorov, “Obobschenie teoremy Khartmana–Vintnera o zakone povtornogo logarifma”, Vestn. LGU, 1971, no. 7, 22–28 | Zbl
[8] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR