On the strong law of large numbers for sequences of pairwise independent random variables
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 159-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We establish new sufficient conditions for the applicability of the strong law of large numbers (SLLN) for sequences of pairwise independent non-identically distributed random variables. These results generalize Etemadi's extension of Kolmogorov's SLLN for identically distributed random variables. Some of the obtained results hold with an arbitrary norming sequence in place of the classical normalization.
@article{ZNSL_2017_466_a11,
     author = {V. M. Korchevsky},
     title = {On the strong law of large numbers for sequences of pairwise independent random variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {159--166},
     year = {2017},
     volume = {466},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a11/}
}
TY  - JOUR
AU  - V. M. Korchevsky
TI  - On the strong law of large numbers for sequences of pairwise independent random variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 159
EP  - 166
VL  - 466
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a11/
LA  - ru
ID  - ZNSL_2017_466_a11
ER  - 
%0 Journal Article
%A V. M. Korchevsky
%T On the strong law of large numbers for sequences of pairwise independent random variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 159-166
%V 466
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a11/
%G ru
%F ZNSL_2017_466_a11
V. M. Korchevsky. On the strong law of large numbers for sequences of pairwise independent random variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 159-166. http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a11/

[1] N. Etemadi, “An elementary proof of the strong law of large numbers”, Z. Wahrsch. Verw. Gebiete, 55 (1981), 119–122 | DOI | MR | Zbl

[2] P. Matula, “A note on the almost sure convergence of sums negatively dependent random variables”, Statist. Probab. Lett., 15 (1992), 209–213 | DOI | MR | Zbl

[3] P. Matula, “On some families of AQSI random variables and related strong law of large numbers”, Appl. Math. E-Notes, 5 (2005), 31–35 | MR | Zbl

[4] T. K. Chandra, A. Goswami, “Cesáro uniform integrability and a strong laws of large numbers”, Sankhyā Ser. A, 54 (1992), 215–231 | MR | Zbl

[5] A. Bose, T. K. Chandra, “A note on the strong law of large numbers”, Calcutta Statist. Assoc. Bull., 44 (1994), 115–122 | DOI | MR | Zbl

[6] V. M. Kruglov, “Strong law of large numbers”, Stability Problems for Stochastic Models, eds. V. M. Zolotarev, V. M. Kruglov, V. Yu. Korolev, TVP/VSP, Moscow–Utrecht, 1994, 139–150 | Zbl

[7] V. A. Egorov, “Obobschenie teoremy Khartmana–Vintnera o zakone povtornogo logarifma”, Vestn. LGU, 1971, no. 7, 22–28 | Zbl

[8] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR