Probabilistic representation of the Cauchy problem solution for the multidimensional Shrödinger equation
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 145-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct a probabilistic representation of the Cauchy problem solution for the Shrödinger equation $2i\partial_tu=-\Delta u$. The result is an extension to a mulidimensional case of the previous results by I. Ibragimov, N. Smorodina and M. Faddeev.
@article{ZNSL_2017_466_a10,
     author = {P. N. Ievlev},
     title = {Probabilistic representation of the {Cauchy} problem solution for the multidimensional {Shr\"odinger} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {145--158},
     year = {2017},
     volume = {466},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a10/}
}
TY  - JOUR
AU  - P. N. Ievlev
TI  - Probabilistic representation of the Cauchy problem solution for the multidimensional Shrödinger equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 145
EP  - 158
VL  - 466
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a10/
LA  - ru
ID  - ZNSL_2017_466_a10
ER  - 
%0 Journal Article
%A P. N. Ievlev
%T Probabilistic representation of the Cauchy problem solution for the multidimensional Shrödinger equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 145-158
%V 466
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a10/
%G ru
%F ZNSL_2017_466_a10
P. N. Ievlev. Probabilistic representation of the Cauchy problem solution for the multidimensional Shrödinger equation. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 145-158. http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a10/

[1] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Ob odnoi predelnoi teoreme, svyazannoi s veroyatnostnym predstavleniem resheniya zadachi Koshi dlya uravneniya Shrëdingera”, Zap. nauchn. semin. POMI, 454, 2016, 158–176 | MR

[2] I. M. Gelfand, N. Ya. Vilenkin, Nekotorye prilozheniya garmonicheskogo analiza. Osnaschennye gilbertovy prostranstva, Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury, M., 1961 | MR

[3] I. M. Gelfand, G. E. Shilov, Obobzhennye funktsii i deistviya nad nimi, Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury, M., 1958 | MR

[4] K. Ito, Veroyatnostnye protsessy, Izdatelstvo inostrannoi literatury, M., 1960 | MR

[5] Dzh. Kingman, Puassonovskie protsessy, Izdatelstvo MTsNMO, M., 2007

[6] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[7] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Mir, M., 1978 | MR