Stochastic interpretation of the MHD-Burgers system
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 7-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct a stochastic interpretation of generalised solution of the Cauchy problem for the simplest magneto-hydrodynamics system, namely, a system including the Burgers equation with a pressure due to a magnetic field. The probabilistic representation constructed in the paper can be used for numerical computations.
@article{ZNSL_2017_466_a0,
     author = {Ya. I. Belopolskaya and A. O. Stepanova},
     title = {Stochastic interpretation of the {MHD-Burgers} system},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--29},
     year = {2017},
     volume = {466},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a0/}
}
TY  - JOUR
AU  - Ya. I. Belopolskaya
AU  - A. O. Stepanova
TI  - Stochastic interpretation of the MHD-Burgers system
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 7
EP  - 29
VL  - 466
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a0/
LA  - ru
ID  - ZNSL_2017_466_a0
ER  - 
%0 Journal Article
%A Ya. I. Belopolskaya
%A A. O. Stepanova
%T Stochastic interpretation of the MHD-Burgers system
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 7-29
%V 466
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a0/
%G ru
%F ZNSL_2017_466_a0
Ya. I. Belopolskaya; A. O. Stepanova. Stochastic interpretation of the MHD-Burgers system. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 26, Tome 466 (2017), pp. 7-29. http://geodesic.mathdoc.fr/item/ZNSL_2017_466_a0/

[1] Ya. I. Belopolskaya, Yu. L. Daletskii, “Issledovanie zadachi Koshi dlya kvazilineinykh parabolicheskikh sistem pri pomoschi markovskikh sluchainykh protsessov”, Izv. vuzov. Matem., 1978, no. 12, 6–17 | MR | Zbl

[2] Ya. Belopolskaya, Yu. Dalecky, Stochastic Equations and Differential Geometry, Kluwer Academic Publishers, 1990 | MR | Zbl

[3] E. Pardoux, F. Pradeilles, R. Rao, “Probabilistic interpretation of a system of semi-linear parabolic partial differential equations”, Ann. Inst. Henri Poincaré, 33:4 (1997), 467–490 | DOI | MR | Zbl

[4] S. Peng, “Probabilistic interpretation for systems of quasilinear parabolic partial differential equations”, Stoch. Stoch. Rep., 37 (1991), 61–74 | DOI | MR | Zbl

[5] Ya. I. Belopolskaya, “Veroyatnostnye modeli zakonov sokhraneniya i balansa v rezhimakh s pereklyucheniyami”, Zap. nauchn. semin. POMI, 454, 2016, 5–42 | MR

[6] R. Griego, R. Hersh, “Random evolutions, Markov chains and systems of partial differential equations”, Proc. Nat. Acad. Sci. USA, 62 (1969), 305–308 | DOI | MR | Zbl

[7] A. Jüngel, “Diffusive and nondiffusive population models.”, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Birkhäuser, 2010, 397–425 | DOI | MR | Zbl

[8] L. Desvillettes, T. Lepoutre, A. Moussa, “Entropy, duality and cross diffusion”, SIAM J. Math. Anal., 46:1 (2014), 820–853 | DOI | MR | Zbl

[9] H. Jin, Z. Wang, L. Xiong, “Cauchy problem of the magnetohydrodynamic Burgers system”, Commun. Math. Sci., 13:1 (2015), 127–151 | DOI | MR | Zbl

[10] P. Olesen, “An integrable version of Burgers equation in magnetohydrodynamics”, Phys. Rev. E Statist. Nonlin. Soft Matter Physics, 68:1, Pt. 2 (2003), 016307 | DOI | MR

[11] Ya. I. Belopolskaya, “Stokhasticheskaya interpretatsiya kvazilineinykh parabolicheskikh sistem s kross-diffuziei”, Teoriya veroyatn. i ee primen., 61:2 (2016), 268–299 | DOI | MR

[12] Ya. I. Belopolskaya, “Veroyatnostnye modeli dinamiki rosta kletok pri kontaktnom ingibirovanii”, Matematicheskie zametki, 101:3 (2017), 346–358 | DOI | MR | Zbl

[13] H. Kunita, “Stochastic flows acting on Schwartz distributions”, J. Theoret. Probab., 7:2 (1994), 247–278 | DOI | MR | Zbl

[14] H. Kunita, “Generalized solutions of stochastic partial differential equations”, J. Theoret. Probab., 7:2 (1994), 279–308 | DOI | MR | Zbl

[15] Ya. Belopolskaya, W. Woyczynski, “Generalized solutions of nonlinear parabolic equations and diffusion processes”, Acta Applicandae Mathematicae, 96:1–3 (2007), 55–69 | DOI | MR | Zbl

[16] Ya. Belopolskaya, W. Woyczynski, “Generalized solution of the Cauchy problem for systems of nonlinear parabolic equations and diffusion processes”, Stoch. Dynam., 11:1 (2012), 1–31 | MR