@article{ZNSL_2017_465_a9,
author = {A. V. Kitaev and A. G. Pronko},
title = {Some explicit results for the generalized emptiness formation probability of the six-vertex model},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {157--173},
year = {2017},
volume = {465},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a9/}
}
TY - JOUR AU - A. V. Kitaev AU - A. G. Pronko TI - Some explicit results for the generalized emptiness formation probability of the six-vertex model JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 157 EP - 173 VL - 465 UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a9/ LA - en ID - ZNSL_2017_465_a9 ER -
A. V. Kitaev; A. G. Pronko. Some explicit results for the generalized emptiness formation probability of the six-vertex model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 157-173. http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a9/
[1] V. E. Korepin, “Calculations of norms of Bethe wave functions”, Commun. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl
[2] A. G. Izergin, “Partition function of the six-vertex model in the finite volume”, Sov. Phys. Dokl., 32 (1987), 878–879 | MR | Zbl
[3] A. G. Izergin, D. A. Coker, V. E. Korepin, “Determinant formula for the six-vertex model”, J. Phys. A, 25 (1992), 4315–4334 | DOI | MR | Zbl
[4] K. Eloranta, “Diamond ice”, J. Stat. Phys., 96 (1999), 1091–1109 | DOI | MR | Zbl
[5] P. Zinn-Justin, The influence of boundary conditions in the six-vertex model, arXiv: cond-mat/0205192
[6] F. Colomo, A. Sportiello, “Arctic curves of the six-vertex model on generic domains: the Tangent Method”, J. Stat. Phys., 164 (2016), 1488–1523 | DOI | MR | Zbl
[7] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[8] N. M. Bogoliubov, C. L. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70:5 (2015), 789–856 | DOI | MR | Zbl
[9] N. M. Bogoliubov, A. V. Kitaev, M. B. Zvonarev, “Boundary polarization in the six-vertex model”, Phys. Rev. E, 65 (2002), 026126 | DOI | MR
[10] N. M. Bogoliubov, A. G. Pronko, M. B. Zvonarev, “Boundary correlation functions of the six-vertex model”, J. Phys. A, 35 (2002), 5525–5541 | DOI | MR | Zbl
[11] F. Colomo, A. G. Pronko, “Emptiness formation probability in the domain-wall six-vertex model”, Nucl. Phys. B, 798 (2008), 340–362 | DOI | MR | Zbl
[12] F. Colomo, A. G. Pronko, “The arctic curve of the domain-wall six-vertex model”, J. Stat. Phys., 138 (2010), 662–700 | DOI | MR | Zbl
[13] A. G. Pronko, “On the emptiness formation probability in the free-fermion six-vertex model with domain wall boundary conditions”, J. Math. Sci. (N.Y.), 192:1 (2013), 101–116 | DOI | MR | Zbl
[14] F. Colomo, A. G. Pronko, “Third-order phase transition in random tilings”, Phys. Rev. E, 88 (2013), 042125 | DOI
[15] F. Colomo, A. G. Pronko, “Thermodynamics of the six-vertex model in an $L$-shaped domain”, Comm. Math. Phys., 339 (2015), 699–728 | DOI | MR | Zbl
[16] A. V. Kitaev, A. G. Pronko, “Emptiness formation probability of the six-vertex model and the sixth Painlevé equation”, Comm. Math. Phys., 345 (2016), 305–354. | DOI | MR | Zbl
[17] F. Colomo, A. G. Pronko, A. Sportiello, “Generalized emptiness formation probability in the six-vertex model”, J. Phys. A, 49 (2016), 415203 | DOI | MR | Zbl
[18] P. L. Ferrari, B. Vető, “The hard-edge tacnode process for Brownian motion”, Electron. J. Probab., 22 (2017), 79, 32 pp. | DOI | MR | Zbl
[19] R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, San Diego, CA, 1982 | MR | Zbl
[20] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edn., Oxford University Press, Oxford, 1995 | MR | Zbl
[21] A. Erdelyi, Higher transcendental functions, v. 1, McGraw-Hill, New York, 1953 | Zbl
[22] M. Jimbo, T. Miwa, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Physica D, 2 (1981), 407–448 | DOI | MR | Zbl
[23] K. Okamoto, “Studies on the Painlevé equations. I. Sixth Painleve Equation $\mathrm P_\mathrm{VI}$”, Ann. Mat. Pura Appl., 146 (1987), 337–381 | DOI | MR | Zbl
[24] P. J. Forrester, N. S. Witte, “Application of the $\tau$-function theory of Painlevé equations to random matrices: PVI, the JUE, CyUE, cJUE and scaled limits”, Nagoya Math. J., 174 (2004), 29–114 | DOI | MR | Zbl
[25] N. J. A. Sloane, Sequence A106729, The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A106729