Orthogonal polynomials, $6j$-symbols and statistical weights of SOS models
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 105-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A simple diagrammatic method which allows to connect Boltzmann weights of the vertex models of statistical mechanics with those of SOS models is described. The analogy with the computation of the $6j-$symbols is pointed out. The construction of statistical weights heavily relies on the realization of the $SU(2)$ group on the space of functions of one variable. The closed-form answer for some particular cases is obtained. It is shown, that in the general case the statistical weight of SOS model, as well as $6j-$symbol, can be presented as the scalar product of two polynomials of certain type.
@article{ZNSL_2017_465_a6,
     author = {P. A. Valinevich and S. E. Derkachov and A. P. Isaev and A. V. Komisarchuk},
     title = {Orthogonal polynomials, $6j$-symbols and statistical weights of {SOS} models},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--134},
     year = {2017},
     volume = {465},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a6/}
}
TY  - JOUR
AU  - P. A. Valinevich
AU  - S. E. Derkachov
AU  - A. P. Isaev
AU  - A. V. Komisarchuk
TI  - Orthogonal polynomials, $6j$-symbols and statistical weights of SOS models
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 105
EP  - 134
VL  - 465
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a6/
LA  - ru
ID  - ZNSL_2017_465_a6
ER  - 
%0 Journal Article
%A P. A. Valinevich
%A S. E. Derkachov
%A A. P. Isaev
%A A. V. Komisarchuk
%T Orthogonal polynomials, $6j$-symbols and statistical weights of SOS models
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 105-134
%V 465
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a6/
%G ru
%F ZNSL_2017_465_a6
P. A. Valinevich; S. E. Derkachov; A. P. Isaev; A. V. Komisarchuk. Orthogonal polynomials, $6j$-symbols and statistical weights of SOS models. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 105-134. http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a6/

[1] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR

[2] N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, M., 1992 | MR

[3] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi. I”, TMF, 40:2 (1979), 194–220 | MR

[4] G. E. Andrews, R. J. Baxter, P. J. Forrester, “Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities”, J. Stat. Phys., 35 (1984), 193–266 | DOI | MR | Zbl

[5] E. Date, M. Jimbo, A. Kuniba, T. Miwa, M. Okado, “Exactly solvable SOS models. II”, Adv. Stud. Pure Math., 16 (1988), 17–122 | MR | Zbl

[6] I. B. Frenkel, V. G. Turaev, “Trigonometric Solutions of the Yang-Baxter Equation, Nets, and Hypergeometric Functions”, Functional Analysis on the Eve of 21st century, v. 1, Progress in Math., 131, Birkhäuser, Boston, 1995, 65–118 | MR | Zbl

[7] I. B. Frenkel, V. G. Turaev, “Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions”, The Arnold-Gelfand Mathematical Seminars, Birkhäuser, Boston, 1997, 171–204 | DOI | MR | Zbl

[8] P. P. Kulish, N. Yu. Reshetikhin, E. K. Sklyanin, “Yang-Baxter equation and representation theory: I”, Lett. Math. Phys., 5 (1981), 393–404 | DOI | MR

[9] A. Klimyk, K. Schmüdgen, Quantum groups and their representations, Texts and Monographs in Physics, Springer, 1997 | MR | Zbl

[10] I. M. Gelfand, M. I. Naimark, Unitarnye predstavleniya klassicheskikh grupp, Tr. mat. inst. im. V. A. Steklova, 36, 1950 | MR

[11] D. P. Zhelobenko, Lektsii po teorii grupp Li, Dubna, 1965

[12] S. E. Derkachov, D. N. Karakhanyan, R. Kirschner, “Yang-Baxter $R$ operators and parameter permutations”, Nucl. Phys. B, 785 (2007), 263–285 | DOI | MR | Zbl

[13] L. D. Faddeev, “How algebraic Bethe ansatz works for integable model”, Quantum symmetries/Symmetries Quantiques, Proc. Les-Houches symmer school, 114, eds. A. Connes, K. Kawedzki, J. Zinn-Justin, North Holland, 1998, 149–211 | MR

[14] V. Pasquier, “Etiology of IRF Models”, Comm. Math. Phys., 118 (1988), 355–364 | DOI | MR | Zbl

[15] A. N. Kirillov, N. Yu. Reshetikhin, “Representations of the algebra $U_q(s\ell(2))$, $q$-orthogonal polynomials and invariants of links”, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), World Sci. Publishing, Teaneck, NJ, 1989, 285–339 | MR

[16] D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Kvantovaya teoriya uglovogo momenta, Nauka, Leningrad, 1975