SOS-representation for the $SL(2,\mathbb C)$-invariant $R$-operator and Feynman diagrams
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 82-104

Voir la notice de l'article provenant de la source Math-Net.Ru

In the first part of the paper the basic facts about unitary seires representations of the group $SL(2,\mathbb C)$ and corresponding solutions to the Yang–Baxter equatins are given. In the second part we derive SOS-representation of the $R$-operator and prove the corresponding Yang–Baxter equation. Using Feynman diagrams we perform the calculation of the kernel of the R-operator in SOS-represetation. The expression for the kernel is presented in the form of Mellin–Barnes integral.
@article{ZNSL_2017_465_a5,
     author = {P. A. Valinevich and S. E. Derkachov and A. P. Isaev},
     title = {SOS-representation for the $SL(2,\mathbb C)$-invariant $R$-operator and {Feynman} diagrams},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--104},
     publisher = {mathdoc},
     volume = {465},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a5/}
}
TY  - JOUR
AU  - P. A. Valinevich
AU  - S. E. Derkachov
AU  - A. P. Isaev
TI  - SOS-representation for the $SL(2,\mathbb C)$-invariant $R$-operator and Feynman diagrams
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 82
EP  - 104
VL  - 465
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a5/
LA  - ru
ID  - ZNSL_2017_465_a5
ER  - 
%0 Journal Article
%A P. A. Valinevich
%A S. E. Derkachov
%A A. P. Isaev
%T SOS-representation for the $SL(2,\mathbb C)$-invariant $R$-operator and Feynman diagrams
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 82-104
%V 465
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a5/
%G ru
%F ZNSL_2017_465_a5
P. A. Valinevich; S. E. Derkachov; A. P. Isaev. SOS-representation for the $SL(2,\mathbb C)$-invariant $R$-operator and Feynman diagrams. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 82-104. http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a5/