SOS-representation for the $SL(2,\mathbb C)$-invariant $R$-operator and Feynman diagrams
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 82-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the first part of the paper the basic facts about unitary seires representations of the group $SL(2,\mathbb C)$ and corresponding solutions to the Yang–Baxter equatins are given. In the second part we derive SOS-representation of the $R$-operator and prove the corresponding Yang–Baxter equation. Using Feynman diagrams we perform the calculation of the kernel of the R-operator in SOS-represetation. The expression for the kernel is presented in the form of Mellin–Barnes integral.
@article{ZNSL_2017_465_a5,
     author = {P. A. Valinevich and S. E. Derkachov and A. P. Isaev},
     title = {SOS-representation for the $SL(2,\mathbb C)$-invariant $R$-operator and {Feynman} diagrams},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--104},
     year = {2017},
     volume = {465},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a5/}
}
TY  - JOUR
AU  - P. A. Valinevich
AU  - S. E. Derkachov
AU  - A. P. Isaev
TI  - SOS-representation for the $SL(2,\mathbb C)$-invariant $R$-operator and Feynman diagrams
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 82
EP  - 104
VL  - 465
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a5/
LA  - ru
ID  - ZNSL_2017_465_a5
ER  - 
%0 Journal Article
%A P. A. Valinevich
%A S. E. Derkachov
%A A. P. Isaev
%T SOS-representation for the $SL(2,\mathbb C)$-invariant $R$-operator and Feynman diagrams
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 82-104
%V 465
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a5/
%G ru
%F ZNSL_2017_465_a5
P. A. Valinevich; S. E. Derkachov; A. P. Isaev. SOS-representation for the $SL(2,\mathbb C)$-invariant $R$-operator and Feynman diagrams. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 82-104. http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a5/

[1] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Generalized functions, v. 5, Academic Press, 1966 | MR | Zbl

[2] I. M. Gelfand, M. A. Naimark, “Unitary representations of the classical groups”, Trudy Mat. Inst. Steklov, 36, 1950, 3–288 | MR | Zbl

[3] M. A. Naimark, Teoriya predstavlenii grupp, Nauka, M., 1976 | MR

[4] I. M. Gelfand, G. E. Shilov, Obobschënnye funktsii, v. 1, Obobschënnye funktsii i deistviya nad nimi, Nauka, M., 1959 | MR

[5] Am. Math. Soc. Transl. Ser. 2, 36 (1964), 101–136 | MR | Zbl | Zbl

[6] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[7] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Lect. Notes in Physics, 151, 1982, 61–119 | DOI | MR | Zbl

[8] E. K. Sklyanin, “Quantum Inverse Scattering Method.Selected Topics”, Quantum Group and Quantum Integrable Systems, Nankai Lectures in Mathematical Physics, ed. Mo-Lin Ge, World Scientific, Singapore, 1992, 63-97 ; arXiv: hep-th/9211111 | MR

[9] L. D. Faddeev, “How Algebraic Bethe Anstz works for integrable model”, Symetries Qantiques, Proc. Les-Houches summer school, eds. A. Connes, K. Kawedzki, J. Zinn-Justin, North-Holland, 1998, 149–219 ; arXiv: hep-th/9605187 | MR

[10] P. P. Kulish, N. Yu. Reshetikhin, E. K. Sklyanin, “Yang–Baxter equation and representation theory”, Lett. Math. Phys., 5 (1981), 393–403 | DOI | MR | Zbl

[11] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982 | MR | Zbl

[12] M. Jimbo, “Introduction to the Yang–Baxter equation”, Int. J. Mod. Phys A, 4 (1983), 3759 ; M. Jimbo (ed.), Yang–Baxter equation in integrable systems, Adv. Ser. Math. Phys., 10, World Scientific, Singapore, 1990 | DOI | MR | DOI | Zbl

[13] E. Date, M. Jimbo, A. Kuniba, T. Miwa, M. Okado, “Exactly solvable SOS models. II”, Adv. Stud. in Pure Math., 16 (1988), 17–122 | MR | Zbl

[14] I. B. Frenkel, V. G. Turaev, “Trigonometric Solutions of the Yang–Baxter Equation, Nets, and Hypergeometric Functions”, Functional Analysis on the Eve of 21st century, v. 1, Progress in Math., 131, Birkhäuser, Boston, 1995, 65–118 | MR | Zbl

[15] I. Frenkel, V. Turaev, “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions”, The Arnold–Gelfand Mathematical Seminars, Birkhäuser Boston, Boston, MA, 1997, 171–204 | DOI | MR | Zbl

[16] V. Pasquier, “Etiology of IRF Models”, Comm. Math. Phys., 118 (1988), 355–364 | DOI | MR | Zbl

[17] S. E. Derkachov, G. P. Korchemsky, A. N. Manashov, “Noncompact Heisenberg spin magnets from high-energy QCD. I: Baxter $Q$-operator and separation of variables”, Nucl. Phys. B, 617 (2001), 375 ; arXiv: hep-th/0107193 | DOI | MR | Zbl

[18] St. Petersburg Math. J., 21:4 (2010), 513–577 | DOI | MR | Zbl

[19] Theor. Math. Phys., 62:3 (1985), 232–240 | DOI | MR

[20] Funct. Anal. Appl., 40:3 (2006), 222–224 | DOI | DOI | MR | Zbl

[21] Sb. Math., 198:3 (2007), 369–381 | DOI | DOI | MR | Zbl

[22] S. E. Derkachov, V. P. Spiridonov, On the $6j$-symbols for $SL(2,\mathbb C)$ group, e-Print, arXiv: 1711.07073