SOS-representation for the $SL(2,\mathbb C)$-invariant $R$-operator and Feynman diagrams
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 82-104
Voir la notice de l'article provenant de la source Math-Net.Ru
In the first part of the paper the basic facts about unitary seires representations of the group $SL(2,\mathbb C)$ and corresponding solutions to the Yang–Baxter equatins are given. In the second part we derive SOS-representation of the $R$-operator and prove the corresponding Yang–Baxter equation. Using Feynman diagrams we perform the calculation of the kernel of the R-operator in SOS-represetation. The expression for the kernel is presented in the form of Mellin–Barnes integral.
@article{ZNSL_2017_465_a5,
author = {P. A. Valinevich and S. E. Derkachov and A. P. Isaev},
title = {SOS-representation for the $SL(2,\mathbb C)$-invariant $R$-operator and {Feynman} diagrams},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {82--104},
publisher = {mathdoc},
volume = {465},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a5/}
}
TY - JOUR AU - P. A. Valinevich AU - S. E. Derkachov AU - A. P. Isaev TI - SOS-representation for the $SL(2,\mathbb C)$-invariant $R$-operator and Feynman diagrams JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 82 EP - 104 VL - 465 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a5/ LA - ru ID - ZNSL_2017_465_a5 ER -
%0 Journal Article %A P. A. Valinevich %A S. E. Derkachov %A A. P. Isaev %T SOS-representation for the $SL(2,\mathbb C)$-invariant $R$-operator and Feynman diagrams %J Zapiski Nauchnykh Seminarov POMI %D 2017 %P 82-104 %V 465 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a5/ %G ru %F ZNSL_2017_465_a5
P. A. Valinevich; S. E. Derkachov; A. P. Isaev. SOS-representation for the $SL(2,\mathbb C)$-invariant $R$-operator and Feynman diagrams. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 82-104. http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a5/