Regularization of propagators with background field and their logarithms in $4$-dimensions
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 61-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We provide different attempts to regularize simultaneously background field dependent propagators and traces of their logarithms for quantum field models in $4$-dimensional euclidian space-time. As was shown in the literature, infinities in the trace of the logarithm and in higher order loop diagramms are of different nature and require different approaches in regularization. We argue that the trace of the loagarithm itself is a finite (w.r.t regularization parameter) quantity. While the correspondent divergence in the effective action arises from the measure of the functional integral imposed by some Ward-like identities.
@article{ZNSL_2017_465_a4,
     author = {T. A. Bolokhov},
     title = {Regularization of propagators with background field and their logarithms in $4$-dimensions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {61--81},
     year = {2017},
     volume = {465},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a4/}
}
TY  - JOUR
AU  - T. A. Bolokhov
TI  - Regularization of propagators with background field and their logarithms in $4$-dimensions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 61
EP  - 81
VL  - 465
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a4/
LA  - ru
ID  - ZNSL_2017_465_a4
ER  - 
%0 Journal Article
%A T. A. Bolokhov
%T Regularization of propagators with background field and their logarithms in $4$-dimensions
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 61-81
%V 465
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a4/
%G ru
%F ZNSL_2017_465_a4
T. A. Bolokhov. Regularization of propagators with background field and their logarithms in $4$-dimensions. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 61-81. http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a4/

[1] B. S. DeWitt, “Quantum Theory of Gravity. 2. The Manifestly Covariant Theory, 3. Applications of the Covariant Theory”, Phys. Rev., 162 (1967), 1195–1239 | DOI | Zbl

[2] L. F. Abbott, “The Background Field Method Beyond One Loop”, Nucl. Phys., 185 (1981), 189 | DOI

[3] L. D. Faddeev, Separation of scattering and selfaction revisited, arXiv: 1003.4854[hep-th]

[4] L. D. Faddeev, Mass in Quantum Yang-Mills Theory: Comment on a Clay Millenium problem, arXiv: 0911.1013[math-ph] | MR

[5] L. D. Faddeev, “Scenario for the renormalization in the 4D YangMills theory”, Int. J. Mod. Phys. A, 31:01 (2016), 1630001 ; arXiv: 1509.06186[hep-th] | DOI | MR | Zbl

[6] I. Jack, H. Osborn, “Two Loop Background Field Calculations For Arbitrary Background Fields”, Nucl. Phys., 207 (1982), 474 | DOI

[7] P. Ramon, Teoriya polya. Sovremennyi vvodnyi kurs, Mir, M., 1984, 107 | MR

[8] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1988, 34 | MR

[9] A. A. Slavnov, “Invariantnaya regulyarizatsiya kalibrovochnykh teorii”, TMF, 13:2 (1972), 174

[10] B. W. Lee, J. Zinn-Justin, “Spontaneously broken gauge symmetries ii. perturbation theory and renormalization”, Phys. Rev. D, 5 (1972), 3137 ; “Erratum”, Phys. Rev. D, 8 (1973), 4654 | DOI | DOI

[11] D. V. Vassilevich, “Heat kernel expansion: User's manual”, Phys. Rept., 388 (2003), 279 ; arXiv: hep-th/0306138 | DOI | MR | Zbl

[12] A. A. Slavnov, “Regulyarizatsiya Pauli-Villarsa dlya neabelevykh kalibrovochnykh teorii”, TMF, 33 \isssue 2 (1977), 210 | MR

[13] C. P. Martin, F. Ruiz Ruiz, “Higher covariant derivative Pauli-Villars regularization does not lead to a consistent QCD”, Nucl. Phys., 436 (1995), 545 ; arXiv: hep-th/9410223 | DOI

[14] T. D. Bakeyev, A. A. Slavnov, “Higher covariant derivative regularization revisited”, Mod. Phys. Lett., 11 (1996), 1539 ; arXiv: hep-th/9601092 | DOI

[15] W. Pauli, F. Villars, “On the Invariant Regularization in Relativistic Quantum Theory”, Rev. Mod. Phys., 21 (1949), 434–444 | DOI | MR | Zbl