@article{ZNSL_2017_465_a2,
author = {N. Bogoliubov and C. Malyshev},
title = {Correlation functions as nests of self-avoiding paths},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {27--45},
year = {2017},
volume = {465},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a2/}
}
N. Bogoliubov; C. Malyshev. Correlation functions as nests of self-avoiding paths. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 27-45. http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a2/
[1] R. Stanley, Enumerative Combinatorics, v. 2, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[2] C. Williams, Explorations in Quantum Computing, Springer, 2010 | MR | Zbl
[3] E. Fama, “Random walks in stock market prices”, Fin. Anal. J., 51 (1995), 75 | DOI
[4] K. Sneppen, Models of Life, Cambridge University Press, 2014
[5] G. Fischer, D. Laming (Eds.), Contributions to Mathematical Psychology, Psychometrics, and Methodology, Springer, 2012
[6] S. Redner, A Guide to First-Passage Processes. Cambridge University Press, 2001 | MR | Zbl
[7] E. Renshaw, Stochastic Population Processes, Oxford University Press, 2011 | MR | Zbl
[8] M. Fisher, “Walks, walls, wetting and melting”, J. Stat. Phys., 34 (1984), 667 | DOI | MR | Zbl
[9] P. Forrester, “Exact solution of the lock step model of vicious walkers”, J. Phys. A.: Math. Gen., 23 (1990), 1259 | DOI | MR | Zbl
[10] T. Nagao, P. Forrester, “Vicious random walkers and a discretization of gaussian random matrix ensembles”, Nucl. Phys. B, 620 (2002), 551 | DOI | MR | Zbl
[11] A. Guttmann, A. Owczarek, X. Viennot, “Vicious walkers and young tableaux I: without walls”, J. Phys. A: Math. Gen., 31 (1998), 8123 | DOI | MR | Zbl
[12] C. Krattenthaler, A. Guttmann, X. Viennot, “Vicious walkers, friendly walkers and young tableaux: II. With a wall”, J. Phys. A: Math. Gen., 33 (2000), 8835 | DOI | MR | Zbl
[13] M. Katori, H. Tanemura, “Scaling limit of vicious walks and two-matrix model”, Phys. Rev. E, 66 (2002), 011105 | DOI
[14] N. Bogoliubov, “$XX$ Heisenberg chain and random walks”, J. Math. Sci., 138:3 (2006), 5636 | DOI | MR | Zbl
[15] I. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, 1995 | MR | Zbl
[16] L. Faddeev, “Quantum completely integrable models in field theory”, Sov. Sci. Rev. C: Math. Phys., 1 (1980), 107 | MR | Zbl
[17] V. Korepin, N. Bogoliubov, A. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[18] N. Bogoliubov, C. Malyshev, “Correlation functions of $XX0$ Heisenberg chain, $q$-binomial determinants, and random walks”, Nucl. Phys. B, 879 (2014), 268 | DOI | MR | Zbl
[19] N. Bogoliubov, C. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70:5 (2015), 789 | DOI | MR | Zbl
[20] N. Bogoliubov, C. Malyshev, “Multi-dimensional random walks and integrable phase models”, J. Math. Sci. (New York), 224:2 (2017), 199 | DOI | MR | Zbl
[21] N. Bogoliubov, C. Malyshev, “Zero range process and multi-dimensional random walks”, SIGMA, 13 (2017), 056 | DOI | MR | Zbl
[22] B.-Q. Jin, V. E. Korepin, “Entanglement, Toeplitz determinants and Fisher–Hartwig conjecture”, J. Stat. Phys., 116 (2004), 79 | DOI | MR | Zbl
[23] N. Bogoliubov, C. Malyshev, “Correlation functions of the $XX$ Heisenberg magnet and random walks of vicious walkers”, Theor. Math. Phys., 159:2 (2009), 563 | DOI | MR | Zbl
[24] W. Fulton, Young tableaux, With applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, 1997 | MR | Zbl
[25] D. J. Gross, E. Witten, “Possible third-order phase transition in the large-$N$ lattice gauge theory”, Phys. Rev. D, 21 (1980), 446 | DOI
[26] K. Johansson, “Unitary random matrix model”, Math. Res. Letters, 5 (1998), 63 | DOI | MR | Zbl