Correlation functions as nests of self-avoiding paths
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 27-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We discuss connection between the $XXZ$ Heisenberg spin chain in the limiting case of zero anisotropy and some aspects of enumerative combinatorics. The representation of the Bethe wave functions via the Schur functions allows to apply the theory of symmetric functions to calculation of the correlation functions. We provide a combinatorial derivation of the dynamical correlation functions of the projection operator in terms of nests of self-avoiding lattice paths.
@article{ZNSL_2017_465_a2,
     author = {N. Bogoliubov and C. Malyshev},
     title = {Correlation functions as nests of self-avoiding paths},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {27--45},
     year = {2017},
     volume = {465},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a2/}
}
TY  - JOUR
AU  - N. Bogoliubov
AU  - C. Malyshev
TI  - Correlation functions as nests of self-avoiding paths
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 27
EP  - 45
VL  - 465
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a2/
LA  - en
ID  - ZNSL_2017_465_a2
ER  - 
%0 Journal Article
%A N. Bogoliubov
%A C. Malyshev
%T Correlation functions as nests of self-avoiding paths
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 27-45
%V 465
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a2/
%G en
%F ZNSL_2017_465_a2
N. Bogoliubov; C. Malyshev. Correlation functions as nests of self-avoiding paths. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 27-45. http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a2/

[1] R. Stanley, Enumerative Combinatorics, v. 2, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[2] C. Williams, Explorations in Quantum Computing, Springer, 2010 | MR | Zbl

[3] E. Fama, “Random walks in stock market prices”, Fin. Anal. J., 51 (1995), 75 | DOI

[4] K. Sneppen, Models of Life, Cambridge University Press, 2014

[5] G. Fischer, D. Laming (Eds.), Contributions to Mathematical Psychology, Psychometrics, and Methodology, Springer, 2012

[6] S. Redner, A Guide to First-Passage Processes. Cambridge University Press, 2001 | MR | Zbl

[7] E. Renshaw, Stochastic Population Processes, Oxford University Press, 2011 | MR | Zbl

[8] M. Fisher, “Walks, walls, wetting and melting”, J. Stat. Phys., 34 (1984), 667 | DOI | MR | Zbl

[9] P. Forrester, “Exact solution of the lock step model of vicious walkers”, J. Phys. A.: Math. Gen., 23 (1990), 1259 | DOI | MR | Zbl

[10] T. Nagao, P. Forrester, “Vicious random walkers and a discretization of gaussian random matrix ensembles”, Nucl. Phys. B, 620 (2002), 551 | DOI | MR | Zbl

[11] A. Guttmann, A. Owczarek, X. Viennot, “Vicious walkers and young tableaux I: without walls”, J. Phys. A: Math. Gen., 31 (1998), 8123 | DOI | MR | Zbl

[12] C. Krattenthaler, A. Guttmann, X. Viennot, “Vicious walkers, friendly walkers and young tableaux: II. With a wall”, J. Phys. A: Math. Gen., 33 (2000), 8835 | DOI | MR | Zbl

[13] M. Katori, H. Tanemura, “Scaling limit of vicious walks and two-matrix model”, Phys. Rev. E, 66 (2002), 011105 | DOI

[14] N. Bogoliubov, “$XX$ Heisenberg chain and random walks”, J. Math. Sci., 138:3 (2006), 5636 | DOI | MR | Zbl

[15] I. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, 1995 | MR | Zbl

[16] L. Faddeev, “Quantum completely integrable models in field theory”, Sov. Sci. Rev. C: Math. Phys., 1 (1980), 107 | MR | Zbl

[17] V. Korepin, N. Bogoliubov, A. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[18] N. Bogoliubov, C. Malyshev, “Correlation functions of $XX0$ Heisenberg chain, $q$-binomial determinants, and random walks”, Nucl. Phys. B, 879 (2014), 268 | DOI | MR | Zbl

[19] N. Bogoliubov, C. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70:5 (2015), 789 | DOI | MR | Zbl

[20] N. Bogoliubov, C. Malyshev, “Multi-dimensional random walks and integrable phase models”, J. Math. Sci. (New York), 224:2 (2017), 199 | DOI | MR | Zbl

[21] N. Bogoliubov, C. Malyshev, “Zero range process and multi-dimensional random walks”, SIGMA, 13 (2017), 056 | DOI | MR | Zbl

[22] B.-Q. Jin, V. E. Korepin, “Entanglement, Toeplitz determinants and Fisher–Hartwig conjecture”, J. Stat. Phys., 116 (2004), 79 | DOI | MR | Zbl

[23] N. Bogoliubov, C. Malyshev, “Correlation functions of the $XX$ Heisenberg magnet and random walks of vicious walkers”, Theor. Math. Phys., 159:2 (2009), 563 | DOI | MR | Zbl

[24] W. Fulton, Young tableaux, With applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, 1997 | MR | Zbl

[25] D. J. Gross, E. Witten, “Possible third-order phase transition in the large-$N$ lattice gauge theory”, Phys. Rev. D, 21 (1980), 446 | DOI

[26] K. Johansson, “Unitary random matrix model”, Math. Res. Letters, 5 (1998), 63 | DOI | MR | Zbl