@article{ZNSL_2017_465_a1,
author = {N. Bogoliubov},
title = {Continuous time multidimensional walks as an integrable model},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {13--26},
year = {2017},
volume = {465},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a1/}
}
N. Bogoliubov. Continuous time multidimensional walks as an integrable model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 13-26. http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a1/
[1] C. Krattenthaler, “Lattice path enumeration”, Handbook of Enumerative Combinatorics, Discrete Math. and Its Appl., ed. M. Bóna, CRC Press, Boca Raton–London–New York, 2015, 589–678 ; arXiv: 1503.05930 | MR | Zbl
[2] M. Fisher, “Walks, walls, wetting and melting”, J. Stat. Phys., 34 (1984), 667 | DOI | MR | Zbl
[3] R. Stanley, Enumerative combinatorics, v. 1, 2, Cambridge University Press, Cambridge, 1996, 1999 | MR
[4] P. Forrester, “Random walks and random permutations”, J. Phys. A.: Math. Gen., 34 (2001), L417 | DOI | MR | Zbl
[5] N. M. Bogoliubov, “$XXO$ Heisenberg chain and random walks”, J. Math. Sci., 138:3 (2006), 5636 | DOI | MR | Zbl
[6] S. Bravyi, L. Caha, R. Movassagh, D. Nagaj, P. W. Shor, “Criticality without frustration for quantum spin-1 chains”, Phys. Rev. Lett., 109 (2012), 207202 | DOI
[7] Y. Aharonov, L. Davidovich, N. Zagury, “Quantum random walks”, Phys. Rev. A, 48 (1993), 1687 | DOI
[8] E. Farhi, S. Gutmann, “Quantum computation and decision trees”, Phys. Rev. A, 58 (1998), 915 | DOI | MR
[9] F. Strauch, “Connecting the discrete- and continuous-time quantum walks”, Phys. Rev. A, 74 (2006), 030301(R) | DOI | MR
[10] P. Preiss, R. Ma, M. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, M. Greiner, “Strongly correlated quantum walks in optical lattices”, Science, 347 (2015), 1229 | DOI | MR | Zbl
[11] C. Cedzich, A. Grünbaum, C. Stahl, L. Velázquez, A. Werner, R. Werner, “Bulk-edge correspondence of one-dimensional quantum walks”, J. Phys. A.: Math. Gen., 49 (2001), 21LT01 | DOI | MR
[12] Y. Lahini, G. Steinbrecher, A. Bookatz, D. Englund, High-fidelity quantum logic gates with interacting bosons on a $1D$ lattice, arXiv: 1501.04349
[13] J. A. Izaac, J. B. Wang, P. C. Abbott, X. S. Ma, “Quantum centrality testing on directed graphs via PT-symmetric quantum walks”, Phys. Rev. A, 96 (2017), 032305 | DOI | MR
[14] T. Mackay, S. Bartlett, L. Stephenson, B. Sanders, “Quantum walks in higher dimensions”, J. of Physics A: Mathematical and General, 35 (2002), 2745 | DOI | MR | Zbl
[15] K. Watabe, N. Kobayashi, M. Katori, N. Konno, “Limit distributions of two-dimensional quantum walks”, Phys. Rev. A, 77 (2008), 062331 | DOI
[16] A. Romanelli, R. Donangelo, R. Portugal, F. Marquezino, Thermodynamics of N-dimensional quantum walks, arXiv: 1408.5300
[17] P. R. G. Mortimer, T. Prellberg, “On the number of walks in a triangular domain”, The Electronic Journal of Combinatorics, 22 (2015), P1.64 | MR | Zbl
[18] A. Kiro, Y. Smilansky, U. Smilansky, The Distribution of Path Lengths On Directed Weighted Graphs, arXiv: 1608.00150v2
[19] C. Peixoto, D. Marcondes, Stopping Times of Random Walks on a Hypercube, arXiv: 1709.02359
[20] N. Bogoliubov, R. Bullough, J. Timonen, “Critical behavior for correlated strongly coupled boson systems in $1+1$ dimensions”, Phys. Rev. Lett., 25 (1994), 3933 | DOI | MR | Zbl
[21] N. Bogoliubov, A. Izergin, N. Kitanine, “Correlation functions for a strongly correlated boson systems”, Nucl. Phys. B, 516 (1998), 501 | DOI | MR | Zbl
[22] P. Carruters, M. Nieto, “Phase and angel variables in quantum mechanics”, Rev. Mod. Phys., 40 (1968), 411 | DOI
[23] L. D. Faddeev, “Quantum completely integrable models of field theory”, Mathematical physics reviews, v. 1, Sov. Sci. Rev. Math. C, 1, 1980, 107–155 | MR | Zbl
[24] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[25] N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model”, J. Phys. A: Math. Gen., 38 (2005), 9415 | DOI | MR | Zbl
[26] N. M. Bogoliubov, “Form factors, plane partitions and random walks”, J. Math. Sci., 158:6 (2009), 771 | DOI | MR | Zbl
[27] N. M. Bogoliubov, A. G. Izergin, N. A. Kitanine, A. G. Pronko, J. Timonen, “Quantum dynamics of strongly interacting boson systems: atomic beam splitters and coupled Bose-Einstein condensates”, Phys. Rev. Lett., 86 (2001), 4439 | DOI
[28] N. M. Bogoliubov, A. G. Pronko, J. Timonen, “Multiple-grain dissipative sandpiles”, J. Math. Sci., 190:3 (2013), 411 | DOI | MR | Zbl
[29] M. L. Mehta, Random Matrices, Academic Press, London, 1991 | MR | Zbl
[30] N. M. Bogoliubov, “Integrable models for vicious and friendly walkers”, J. Math. Sci., 143:1 (2007), 2729 | DOI | MR | Zbl
[31] N. M. Bogoliubov, C. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70:5 (2015), 789 | DOI | MR | Zbl