Continuous time multidimensional walks as an integrable model
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 13-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Continuous time walks in multidimensional symplectical lattices are considered. It is shown that the generating functions of random walks and the transition amplitudes of continuous time quantum walks are expressed through the dynamical correlation functions of the exactly solvable model describing strongly correlated bosons on a chain, the so-called phase model. The number of random lattice paths of fixed number of steps connecting the starting and ending points of the multidimensional lattice is expressed through the solutions of Bethe equations of the phase model. Its asymptotic is obtained in the limit of the large number of steps.
@article{ZNSL_2017_465_a1,
     author = {N. Bogoliubov},
     title = {Continuous time multidimensional walks as an integrable model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {13--26},
     year = {2017},
     volume = {465},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a1/}
}
TY  - JOUR
AU  - N. Bogoliubov
TI  - Continuous time multidimensional walks as an integrable model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 13
EP  - 26
VL  - 465
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a1/
LA  - en
ID  - ZNSL_2017_465_a1
ER  - 
%0 Journal Article
%A N. Bogoliubov
%T Continuous time multidimensional walks as an integrable model
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 13-26
%V 465
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a1/
%G en
%F ZNSL_2017_465_a1
N. Bogoliubov. Continuous time multidimensional walks as an integrable model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 24, Tome 465 (2017), pp. 13-26. http://geodesic.mathdoc.fr/item/ZNSL_2017_465_a1/

[1] C. Krattenthaler, “Lattice path enumeration”, Handbook of Enumerative Combinatorics, Discrete Math. and Its Appl., ed. M. Bóna, CRC Press, Boca Raton–London–New York, 2015, 589–678 ; arXiv: 1503.05930 | MR | Zbl

[2] M. Fisher, “Walks, walls, wetting and melting”, J. Stat. Phys., 34 (1984), 667 | DOI | MR | Zbl

[3] R. Stanley, Enumerative combinatorics, v. 1, 2, Cambridge University Press, Cambridge, 1996, 1999 | MR

[4] P. Forrester, “Random walks and random permutations”, J. Phys. A.: Math. Gen., 34 (2001), L417 | DOI | MR | Zbl

[5] N. M. Bogoliubov, “$XXO$ Heisenberg chain and random walks”, J. Math. Sci., 138:3 (2006), 5636 | DOI | MR | Zbl

[6] S. Bravyi, L. Caha, R. Movassagh, D. Nagaj, P. W. Shor, “Criticality without frustration for quantum spin-1 chains”, Phys. Rev. Lett., 109 (2012), 207202 | DOI

[7] Y. Aharonov, L. Davidovich, N. Zagury, “Quantum random walks”, Phys. Rev. A, 48 (1993), 1687 | DOI

[8] E. Farhi, S. Gutmann, “Quantum computation and decision trees”, Phys. Rev. A, 58 (1998), 915 | DOI | MR

[9] F. Strauch, “Connecting the discrete- and continuous-time quantum walks”, Phys. Rev. A, 74 (2006), 030301(R) | DOI | MR

[10] P. Preiss, R. Ma, M. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, M. Greiner, “Strongly correlated quantum walks in optical lattices”, Science, 347 (2015), 1229 | DOI | MR | Zbl

[11] C. Cedzich, A. Grünbaum, C. Stahl, L. Velázquez, A. Werner, R. Werner, “Bulk-edge correspondence of one-dimensional quantum walks”, J. Phys. A.: Math. Gen., 49 (2001), 21LT01 | DOI | MR

[12] Y. Lahini, G. Steinbrecher, A. Bookatz, D. Englund, High-fidelity quantum logic gates with interacting bosons on a $1D$ lattice, arXiv: 1501.04349

[13] J. A. Izaac, J. B. Wang, P. C. Abbott, X. S. Ma, “Quantum centrality testing on directed graphs via PT-symmetric quantum walks”, Phys. Rev. A, 96 (2017), 032305 | DOI | MR

[14] T. Mackay, S. Bartlett, L. Stephenson, B. Sanders, “Quantum walks in higher dimensions”, J. of Physics A: Mathematical and General, 35 (2002), 2745 | DOI | MR | Zbl

[15] K. Watabe, N. Kobayashi, M. Katori, N. Konno, “Limit distributions of two-dimensional quantum walks”, Phys. Rev. A, 77 (2008), 062331 | DOI

[16] A. Romanelli, R. Donangelo, R. Portugal, F. Marquezino, Thermodynamics of N-dimensional quantum walks, arXiv: 1408.5300

[17] P. R. G. Mortimer, T. Prellberg, “On the number of walks in a triangular domain”, The Electronic Journal of Combinatorics, 22 (2015), P1.64 | MR | Zbl

[18] A. Kiro, Y. Smilansky, U. Smilansky, The Distribution of Path Lengths On Directed Weighted Graphs, arXiv: 1608.00150v2

[19] C. Peixoto, D. Marcondes, Stopping Times of Random Walks on a Hypercube, arXiv: 1709.02359

[20] N. Bogoliubov, R. Bullough, J. Timonen, “Critical behavior for correlated strongly coupled boson systems in $1+1$ dimensions”, Phys. Rev. Lett., 25 (1994), 3933 | DOI | MR | Zbl

[21] N. Bogoliubov, A. Izergin, N. Kitanine, “Correlation functions for a strongly correlated boson systems”, Nucl. Phys. B, 516 (1998), 501 | DOI | MR | Zbl

[22] P. Carruters, M. Nieto, “Phase and angel variables in quantum mechanics”, Rev. Mod. Phys., 40 (1968), 411 | DOI

[23] L. D. Faddeev, “Quantum completely integrable models of field theory”, Mathematical physics reviews, v. 1, Sov. Sci. Rev. Math. C, 1, 1980, 107–155 | MR | Zbl

[24] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[25] N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model”, J. Phys. A: Math. Gen., 38 (2005), 9415 | DOI | MR | Zbl

[26] N. M. Bogoliubov, “Form factors, plane partitions and random walks”, J. Math. Sci., 158:6 (2009), 771 | DOI | MR | Zbl

[27] N. M. Bogoliubov, A. G. Izergin, N. A. Kitanine, A. G. Pronko, J. Timonen, “Quantum dynamics of strongly interacting boson systems: atomic beam splitters and coupled Bose-Einstein condensates”, Phys. Rev. Lett., 86 (2001), 4439 | DOI

[28] N. M. Bogoliubov, A. G. Pronko, J. Timonen, “Multiple-grain dissipative sandpiles”, J. Math. Sci., 190:3 (2013), 411 | DOI | MR | Zbl

[29] M. L. Mehta, Random Matrices, Academic Press, London, 1991 | MR | Zbl

[30] N. M. Bogoliubov, “Integrable models for vicious and friendly walkers”, J. Math. Sci., 143:1 (2007), 2729 | DOI | MR | Zbl

[31] N. M. Bogoliubov, C. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70:5 (2015), 789 | DOI | MR | Zbl