Tur\'an type results for distance graphs in infinitesimal plane layer
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IX, Tome 464 (2017), pp. 132-168

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain the lower bound of number of edges in a unit distance graph $\Gamma$ in an infinitesimal plane layer $\mathbb R^2\times[0,\varepsilon]^d$ which compares number of edges $e(\Gamma)$, number of vertices $\nu(\Gamma)$ and independence number $\alpha(\Gamma)$. Our bound $e(\Gamma)\ge\frac{19\nu\Gamma)-50\alpha(\Gamma)}3$ is generalizing of previous bound for distance graphs in plane and a strong upgrade of Turán's bound when $\frac15\le\frac{\alpha(\Gamma)}{\nu(\Gamma)}\le\frac27$.
@article{ZNSL_2017_464_a7,
     author = {L. E. Shabanov},
     title = {Tur\'an type results for distance graphs in infinitesimal plane layer},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {132--168},
     publisher = {mathdoc},
     volume = {464},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a7/}
}
TY  - JOUR
AU  - L. E. Shabanov
TI  - Tur\'an type results for distance graphs in infinitesimal plane layer
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 132
EP  - 168
VL  - 464
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a7/
LA  - ru
ID  - ZNSL_2017_464_a7
ER  - 
%0 Journal Article
%A L. E. Shabanov
%T Tur\'an type results for distance graphs in infinitesimal plane layer
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 132-168
%V 464
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a7/
%G ru
%F ZNSL_2017_464_a7
L. E. Shabanov. Tur\'an type results for distance graphs in infinitesimal plane layer. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IX, Tome 464 (2017), pp. 132-168. http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a7/