A bound on the number of leaves in a~spanning tree of a~connected graph of minimal degree~6
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IX, Tome 464 (2017), pp. 112-131
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved, that a connected graph of minimal degree 6 has a spanning tree, such that at least $\frac{11}{21}$ of its vertices are leaves.
			
            
            
            
          
        
      @article{ZNSL_2017_464_a6,
     author = {E. N. Simarova},
     title = {A bound on the number of leaves in a~spanning tree of a~connected graph of minimal degree~6},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {112--131},
     publisher = {mathdoc},
     volume = {464},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a6/}
}
                      
                      
                    TY - JOUR AU - E. N. Simarova TI - A bound on the number of leaves in a~spanning tree of a~connected graph of minimal degree~6 JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 112 EP - 131 VL - 464 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a6/ LA - ru ID - ZNSL_2017_464_a6 ER -
E. N. Simarova. A bound on the number of leaves in a~spanning tree of a~connected graph of minimal degree~6. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IX, Tome 464 (2017), pp. 112-131. http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a6/